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ABSTRACT

Drought is one of the most recurrent and damaging climate extremes in Uganda, affecting agriculture,
water resources, and livelihoods. However, its future trends under changing climate conditions remain
poorly understood. This study analyzed historical and projected drought characteristics across Uganda.
We used the Standardized Precipitation—Evapotranspiration Index (SPEI) derived from the bias-
corrected CanESMS5 model within the NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP-CMIP6) framework. Three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and
SSP5-8.5) representing low, medium, and high emissions scenarios were considered. Terra-Climate
data for 1985-2014 were used for bias correction and validation. Drought duration, frequency, severity,
and intensity were calculated from 3-month SPEI, and spatial clustering was assessed using the Getis-
Ord Gi* statistic. Historical analysis shows drying trends in northern and central Uganda. Future
projections reveal spatially heterogeneous drought responses. During the mid-century (2041-2070),
drought occurrence increases under SSP1-2.6 in central and northern regions but decreases under
SSP2-4.5 in the central-west and under SSP5-8.5 in Karamoja. Toward the late century (2071-2100),
SSP1-2.6 indicates a general decline in drought occurrence, SSP2-4.5 shows increasing droughts in the
east and reductions in the northwest, and SSP5-8.5 projects widespread intensification across southern,
western, and northern Uganda. Hotspot analysis identifies persistent drought clusters along the cattle
corridor, extending from the Ankole—Kigezi regions and Karamoja. These findings provide a detailed
understanding of Uganda’s evolving drought risks and support targeted adaptation planning, water
resource management, and climate-resilient livelihood strategies.
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1. INTRODUCTION

Droughts are among the most complex and devastating environmental hazards worldwide,
evolving slowly yet with long-lasting ecological and socioeconomic consequences. Unlike sudden
extreme events such as floods or hurricanes, droughts evolve slowly, persisting for months or years
and affecting vast areas (Krishna Prabhakar, 2022; Orimoloye et al., 2022). Their gradual onset makes
detection, monitoring, and management particularly challenging. Intensifying climate change is
projected to exacerbate both the frequency and severity of droughts, heightening risks for vulnerable
regions (IPCC, 2022).
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Sub-Saharan Africa faces a disproportionate drought burden due to structural vulnerabilities such
as poverty, dependence on rainfed agriculture, and limited adaptive capacity (Lombe et al., 2024;
Voda et al., 2019). Recurrent droughts have reduced agricultural productivity, disrupted livelihoods,
and deepened food insecurity (Onyeaka et al., 2024). These events also drive water scarcity and rural-
urban migration. This intensifies competition for limited resources and puts pressure on urban
infrastructure (Calverley and Walther, 2022; Ceola et al., 2023; Li et al., 2023). Recent studies
indicate an upward trend in drought frequency and intensity across Africa, driven by reduced
precipitation and rising evapotranspiration (Elkouk et al., 2021; Han et al., 2022; Mathivha et al.,
2024; Orke and Li, 2022; Satoh et al., 2022; R Ssembajwe, Nguefack, et al., 2025; Uwimbabazi et
al., 2022).

Uganda exemplifies this regional vulnerability. Nearly 80 percent of households in Uganda rely
on agriculture as their main economic activity (UBOS, 2024), and most of this agriculture is rainfed.
As a result, the country’s economy and food systems are highly sensitive to rainfall variability.
Despite the increasing frequency and impacts of drought, most research efforts in Uganda have
remained localized, focusing on specific districts or regions and relying largely on a single
meteorological variable such as precipitation (Byakatonda et al., 2021; Kyatengerwa et al., 2020;
Mulinde et al., 2016; Najjuma et al., 2021; Nakalembe, 2018; Nalwanga et al., 2024; Onyutha and
Kerudong, 2022). While such studies provide valuable local insights, they lack the spatial continuity,
resolution, and bias correction consistency required for robust national-scale projections (Voda Al et
al., 2018). Furthermore, it is not clear how the projected warming will affect regional and local water
balances especially in countries like Uganda where the vulnerability is high.

The availability of advanced downscaled climate model datasets now provides new opportunities
to address these limitations. The NASA Earth Exchange Global Daily Downscaled Projections based
on CMIP6 (NEX-GDDP-CMIP6) is one such datasets. This dataset offers bias-corrected and
statistically downscaled data for up to 16 climate variables at approximately 25 km spatial resolution
for the period 1950-2100 (Thrasher et al., 2022). It has been successfully applied in several regions
to assess hydrological and climatic extremes. For example, it has been used to project rainfall
variability in the Brazilian Amazon and Cerrado (de Mendonga et al., 2024), temperature and
precipitation changes in China (Wu et al., 2023), and extreme weather indices across the Arabian
Peninsula and the UAE (Baogang et al., 2024; Rao et al., 2024; Vinodhkumar et al., 2024). In Africa,
it has demonstrated skill in reproducing observed precipitation patterns, though regional performance
varies with the reference dataset used (Samuel et al., 2025). In Uganda, (Ronald Ssembajwe et al.,
2025) used it to track future atmospheric circulations such as wind and humidity. However, its
potential in simulating droughts especially based on the water balance remains largely unexplored in
Uganda.

This study employs the bias-adjusted and statistically downscaled NEX-GDDP-CMIP6
CanESMS5 model to project future drought dynamics in Uganda based on scale 3 SPEI. Specifically,
it aims to (1) simulate and validate historical droughts using TerraClimate-based SPEI droughts as a
reference, (2) analyse historical and future drought characteristics and long-term trends based on
SSP1-2.6, SSP2-4.5 and SSP5-8.5, and (3) identify historical and future spatial drought hotspots. By
integrating advanced CMIP6 projections with observational datasets, this study provides new insights
to inform climate-resilient development, drought preparedness, and formulation of effective national
adaptation strategies.

2. STUDY AREA

This study was conducted in Uganda, an inland country located in East Africa along the equator
(Byamukama et al., 2025). It lies between longitudes 29°E and 35.2°E and latitudes 4.5°N and 1.5°S
(Fig. 1). Uganda covers 241,551 km? (UBOS, 2025) and is bordered by Kenya, South Sudan, the
Democratic Republic of Congo, Tanzania, and Rwanda.

The country’s terrain is diverse, consisting of elevated plateaus, highlands, and extensive
wetlands. Prominent features include the Rwenzori Mountains in the west, Mount Elgon in the east,
and the Albertine Rift Valley. Major lakes such as Victoria, Kyoga, and Albert, together with the
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River Nile, play a key role in influencing local convection and humidity, resulting in spatial variability
in rainfall patterns.

Uganda’s climate is shaped by the seasonal migration of the Intertropical Convergence Zone
(ITCZ), monsoon systems, and large-scale circulation patterns (Jury, 2018). The country experiences
a bimodal rainfall regime, with the long rains from March to May (MAM) and short rains from
September to November (SON) (Ngoma et al., 2021). Annual rainfall ranges from about 500 mm in
the semi-arid northeast to more than 2,000 mm in the southern and western highlands (Nuwagira and
Yasin, 2022). The mean near-surface annual temperature is approximately 21°C, with monthly values
ranging from 15°C in July to 30°C in February (Nsubuga and Rautenbach, 2018).
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Fig. 1. Map showing location of Uganda in Africa, the four major regions, major lakes, and river networks that
influence regional climatic and hydrological patterns.

3. DATA AND METHODS

3.1. Data acquisition

3.1.1. CanESMS5 projected data

We used NEX-GDDP-CMIP6, the latest version of NASA’s global downscaled climate
projection product. NEX-GDDP-CMIP6 provides bias-corrected and statistically downscaled daily
climate projections from CMIP6 models at a 0.25° x 0.25° (~25 km) spatial resolution (Thrasher et
al., 2022). The NEX-GDDP scheme uses the bias correction and statistical downscaling (BCSD)
method to downscale global climate models (GCMs) from parent coarse resolutions ranging from 1
X 1o to 2.5¢ x 2.5 to a finer 0.25° x 0.25° (Ronald Ssembajwe et al., 2025). The dataset covers a
reference period (1950-2014) and future projections (2015-2100) under Shared Socioeconomic
Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). For consistency with TerraClimate, the
1985-2014 period was used as the reference period. The dataset is publicly available through NASA’s
Earth  Exchange platform at https://ds.nccs.nasa.gov/thredds/catalog/ AMES/NEX/GDDP-
CMIP6/catalog.html.


https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html
https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html
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For this study, we selected CanESM5 model based on its demonstrated skill in reproducing East
African climate regimes and their associated drivers such as El Nino Southern Oscillations, Dipole
modes and orientation and strength of high-pressure cells (Ayugi et al., 2022; Dufatanye Umwali et
al., 2024). Thus, we obtained CanESMS5 daily downscaled and bias-corrected climate variables from
the NEX-GDDP-CMIP6 archive for SPEI computation. This included precipitation (P) and mean air
temperature, relative humidity (RH), 2-m wind speed, and downwelling shortwave radiation. All data
were accessed in NetCDF format for both the historical (1985-2014) and future (2041-2070 and
2071-2100) periods. Although multi-model ensembles provide a wider uncertainty range (Akinsanola
et al., 2021), we used a single, well-performing earth systems model. This allowed a detailed bias-
adjusted analysis while ensuring computational efficiency in dataset handling.

3.1.2. CanESMS5 projected data

Monthly precipitation and potential evapotranspiration (PET) from TerraClimate were used as
reference data for model validation and bias correction. TerraClimate provides globally consistent 4
km gridded climate data. It integrates the University of East Anglia CRU TS dataset, JRA-55
reanalysis, and WorldClim datasets, effectively capturing both long-term climatological means and
monthly anomalies (Abatzoglou et al., 2018). Its integration of ground, satellite, and reanalysis data
ensures high consistency and spatial detail, making it well-suited for regional drought analysis,
particularly in data-sparse regions such as Uganda. TerraClimate has been widely validated and
shown to perform well against station-based and reanalysis datasets, making it suitable for near-
surface climate variability and water balance studies (Kolling Neto et al., 2024). For East Africa,
studies like Kobusinge et al., (2024) and Ronald Ssembajwe et al., (2025) have relied on it for
hydrological and agroclimatic assessments. A recent validation study against station observations by
R Ssembajwe, Ngatia, et al., (2025) has shown Terra-Climate’s reliability in reproducing the
climatology of hydrothermal variables such as temperature, humidity and vapor pressure deficit over
East Africa thus, justifying its adoption.

The dataset was accessed at http://www.climatologylab.org/terraclimate.html. Additionally, the
ASTER Global Digital Elevation Model (DEM) at 30 m spatial resolution was used to derive surface
atmospheric pressure for the FAO-56 Penman—Monteith PET computation.

3.2. Preprocessing

3.2.1. Data curation and quality control

All climate datasets were processed within the MATLAB R2025b environment. The NEX-
GDDP-CMIP6 data were obtained as single year NetCDF files and concatenated into continuous 30-
year time series for each climate variable per period: 1985-2014, 2041-2070 and 2071-2100. The
datasets were then spatially subset and masked to Uganda’s administrative boundaries using
MATLAB’s spatial masking tools. Because the NEX-GDDP-CMIP6 grid (~25 km) differed from the
Terra-Climate grid (~4 km), a second-order conservative regridding technique was applied to align
the CanESMS5 data with the reference Terra-Climate resolution. We then explored the datasets for
completeness and validity using isnan function and logical operators, respectively. The completeness
test indicated no missing values.

3.2.2. Computation of PET and SPEI

3.2.2.1. Potential Evapotranspiration

The modified FAO56 (Penman-Monteith) method (equation 1) was applied to compute
historical simulated and future PET using daily air mean temperature, RH, downwelling shortwave
radiation, windspeed, and surface pressure derived from the DEM. We chose FAO56 because of its
robustness over humid equatorial regions like Uganda (Ssembajwe et al., 2024), and its global
recommendation as the empirical standard for PET computation (Allen et al., 1998). The FAOS56
Penman-Monteith equation is expressed as:


http://www.climatologylab.org/terraclimate.html

Obed BYAMUKAMA, Ronald SSEMBAJWE, Mihai VODA and Brian Odhiambo AYUGI / SPEI-BASED ... 149

900
0408A(Rn - G) + YWUZ(ES - ea)

PET =
A+ y(1+ 0.34u,)

ey

where PET is the potential evapotranspiration (mm day '), Rn is the net radiation at the crop
surface (MJ m2 day ), G is soil heat flux density (MJ m2 day '), T is mean daily air temperature at
2 m height (°C), uz is wind speed at 2 m height (m s™'), e, is saturation vapor pressure (kPa), e, is
actual vapor pressure (kPa), (es — e.) is vapor pressure deficit (kPa), A is slope of the saturation vapor
pressure—temperature curve (kPa °C™') and vy is psychrometric constant (kPa °C™). All intermediate
parameters were computed following the FAO-56 guidelines (Allen et al., 1998).

Daily PET and precipitation from CanESMS5 were aggregated to monthly means to maintain
temporal consistency with TerraClimate. The process involves binning daily precipitation and PET
datasets into annual and monthly cycles based on the time/datetime vector corresponding to each
dataset using the unique function in MATLAB (R Ssembajwe, Twah, et al., 2025). The outputs are
then reshaped to the original dimensions and aggregated according to each month’s length using a for
loop. The resulting monthly PET and precipitation series were subsequently used in the computation
of SPEL

3.2.2.2. Standardized Precipitation-Evapotranspiration Index (SPEI)

SPEIL, developed by Vicente-Serrano et al., (2010), is a widely applied multiscalar drought index
that integrates both precipitation and PET to provide a more comprehensive measure of drought
conditions. Unlike the Standardized Precipitation Index (SPI), which relies solely on precipitation,
SPEI incorporates temperature-driven evapotranspiration, making it particularly relevant for
assessing droughts under a changing climate (Vicente-Serrano et al., 2010; Wang et al., 2021). Its
sensitivity to both moisture deficits and warming trends allows it to detect drought onset, persistence,
and intensity across multiple timescales, from short-term agricultural droughts to long-term
hydrological droughts (Wang et al., 2021).

In this study, we applied SPEI at a 3-month timescale (SPEI-03) to account for vegetation’s
delayed response to shocks and seasonal variability. This choice reflects Uganda’s bimodal rainfall
regime, where the March—May and September—November rainy seasons are critical for agriculture
and water availability. Shorter timescales (1-3 months) have been shown to effectively characterize
meteorological and agricultural droughts, which directly impact soil moisture and crop production
(Vicente-Serrano et al., 2010). Previous East African drought studies have also adopted 3-month
drought indices to assess seasonal drought dynamics in regions with strong rainfall seasonality (Ayugi
et al., 2022).

The SPEI was computed by first estimating the monthly climate water balance, D, as the
difference between precipitation (P) and PET (equation 2).

D =P - PET ()

where D is the monthly water balance (deficit or surplus in mm), P is the total monthly
precipitation (mm), and PET is the potential evapotranspiration for the same month (mm). Positive
values of D indicate moisture surplus (conditions are wetter than normal), while negative values
reflect deficits, signifying drought conditions.

The accumulated water balance series (D) were fitted to a log-logistic probability distribution,
following Vicente-Serrano et al., (2010). The probability density function is expressed as in equation

3).

o =EEN [ (5] ®
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where f(x) is the cumulative probability function of x (the water balance deficit D), o, B, and y
are the scale, shape, and location parameters of the distribution, respectively for D values in the range
(y< x<0).

Parameters of the log-logistic distribution can be estimated following the L-moment procedure
(Ahmad et al., 1988). Hence, the probability distribution function of the D series, according to the
log-logistic distribution, is given by equation (4).

-1

F(x) = [1 + (x « y)ﬁ] ©)

After fitting the distribution, the water balance values are transformed into standardized SPEI
values. These standardized values enable comparisons across different time periods and regions. As
described by Vicente-Serrano et al., (2010), the SPEI is obtained by standardizing values of F(x) as
in equation (5)

SPEI = Co + Cw + C,w? c
-V 1+d,w+d,w? + d;w? ®

when P<0.5, w = /=2 [n(P) and when P>0.5, w =,/ —2In(1 - P)
where CO = 2.5155, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 =
0.001308. All these parameters are defined in the study by Vicente-Serrano et al., (2010).

The negative and positive SPEI values indicate dry and wet conditions, respectively. Table 1
summarizes the category of dry and wet conditions based on SPEI values following the description
by Mckee et al., (1993).

Table 1

Categories of dry and wet conditions indicated by SPEI values.

SPEI value Category

2 and above Extremely wet

1.5t0 1.99 Very wet

1.0to 1.49 Moderately wet

-0.99 to0 0.99 Near normal

—1.0to —1.49 Moderately dry

-1.5t0 -1.99 Severely dry

-2 and less Extremely dry

3.3. Data analysis

3.3.1. Empirical Quantile Mapping (EQM) for SPEI bias correction

Although the NEX-GDDP-CMIP6 data used for SPEI computation were already downscaled
and bias-corrected, we applied an additional correction to further align CanESMS5-simulated SPEI
values with the TerraClimate-based SPEI. This was achieved using the EQM technique.

EQM corrects systematic deviations by mapping the cumulative distribution function (CDF) of
the model outputs to that of the reference dataset (Li et al., 2023; Niranjan Kumar et al., 2022;
Ernawati et al., 2018). Unlike parametric approaches, EQM does not assume a specific theoretical
distribution for the data (Niranjan Kumar et al., 2022). This makes it suitable for climate variables
such as precipitation and SPEI that often exhibit skewed or multimodal behavior. Mathematically, the
bias-adjusted value x, can be expressed by equation (6).

xa = Fo_l(Fm(xm)) (6)
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where F,, and F; ! and represent the empirical cumulative distribution and its inverse for the
model and observed datasets, respectively.

The corrected SPEI outputs were validated against TerraClimate-based SPEI for the historical
period using histogram and kernel density estimation (KDE) plots. This helped to assess distributional
consistency. It was also validated through grid-level time series comparisons to evaluate temporal
coherence.

3.3.2. Drought characteristics

Drought events were identified using the run theory approach as proposed by Li et al.
(Yevjevich, 1967). A run is the portion of all values in a time series that is below or above a cutoff
threshold. Here, sequences of consecutive periods during which the drought index remained below -
1 (SPEI <-1) were isolated. Each continuous sequence below this threshold was defined as a single
drought event, beginning at the onset (first month below —1) and ending when SPEI exceeded —1.
This approach allowed for the systematic identification and quantification of individual drought
events from a continuous SPEI time series. After identifying drought events, key drought
characteristics including duration, severity, intensity, and frequency were computed using equations
(7-10).

i Drought Duration (DD) refers to the number of consecutive months from onset (SPEI<-1)
until cessation (SPEI > -1). Average drought duration across the study period was calculated
using equation (7).

- N . DDi

DD = —N @)
where i is the event and N is the total number of drought events

il. Drought Severity (DS) refers to the cumulative magnitude of drought over its duration,
defined as the absolute sum of SPEI values below the threshold as in equation (8).
tend
DS = Z ISPEL| @)
t=tstat

where SPE, is the SPEI value at time t and N is the duration of the drought in months

iil. Drought Intensity (DI) refers to the average severity per month during a drought event and
is given by equation (9).
DI bs 9
=D €))

iv. Drought Frequency (DF) refers to the number of drought events relative to the length of the
study period, given by equation (10).

_ Number of drought events 10
~ Total number of months (10)

3.3.3. Hotspot analysis

Spatial hotspots of drought intensity and frequency were identified using the Getis-Ord Gi*
statistic (Getis and Ord, 1992) implemented, in MATLAB R2025b. The method detects statistically
significant clusters by comparing the local sum of each grid cell and its neighbors to the global mean
of the study area (Nejadrekabi et al., 2021; Rousta et al., 2017). The Gi* statistic measures whether
high or low values occur together in space more often than would be expected by random chance,
thereby highlighting hotspots (clusters of high drought values) and coldspots (clusters of low drought
values). The Getis-Ord Gi* statistic is given by Equation (11) with its terms defined by equations (12)
and (13).
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where G/'is the Getis-Ord local statistic for location i, x; is the drought variable value at location
J- wy; is the spatial weight between locations i and j, n is the total number of locations (grid cells), X
is the mean of all x; and S is the standard deviation of x;. The weights w;; define spatial proximity
based on a fixed-distance band, such that nearby grid cells exert stronger influence on Gi* values.

Each grid cell receives a Z-score indicating the degree of spatial clustering. High positive Z-
scores denote hotspots (areas with significantly high drought values), whereas negative Z-scores
indicate coldspots (areas with low drought values). Z-scores close to zero reflect random spatial
patterns. Statistical significance was evaluated at p < 0.05, with larger absolute Z-scores
corresponding to stronger spatial clustering.

The Getis-Ord Gi* method was selected because it effectively captures localized spatial
dependence, accounting for both the magnitude and spatial context of drought indicators. Compared
with global statistics such as Moran’s I, Gi* detects fine-scale clustering of extremes (Akhter and
Afroz, 2024; Nejadrekabi et al., 2021), making it particularly suitable for identifying regions with
persistently high drought stress. This approach has been widely used in environmental and climate
risk analyses for detecting areas of recurrent hazard concentration (Azeez et al., 2025; Nejadrekabi et
al., 2021; Rousta et al., 2017).

3.3.4. Trend analysis

Temporal trends in SPEI and derived drought characteristics were analyzed using the Mann—
Kendall test (Kendall, 1975; Mann, 1945; Haidu, 1997; Haidu & Magyari-Saska, 2009) and Sen’s
slope estimator (Sen, 1968). The Mann—Kendall test is a non-parametric approach that determines the
direction and significance of trends without requiring data normality. It is robust to missing values
and outliers, making it suitable for climatological time series. Sen’s slope estimator provides the rate
of change by computing the median of all pairwise slopes between observations, thereby reducing the
influence of extreme values and non-uniform sampling. All results were visualized in MATLAB’s
geospatial mapping toolbox using interpolation and k-means clustering to enhance spatial
representation.

4. RESULTS

4.1. Model bias correction and validation

Fig. 2 illustrates the distributional comparison between observed, modelled, and bias-adjusted
SPEI-03 values. The upper panel shows histograms, while the lower panel presents the corresponding
KDE. Before bias correction, both historical and future modelled SPEI values exhibited systematic
deviations from the observed distribution, with noticeable shifts around the mean and differences in
tail behaviour. After applying EQM, the bias-adjusted SPEI distributions closely matched the
observed pattern across the entire range of values. The KDE curves demonstrate a strong overlap
between the observed (black line) and the historical bias-adjusted (purple) and future (blue) series.
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This indicates a substantial correction of mean and variance biases. This alignment suggests that the
EQM approach effectively removed systematic errors associated with the CanESMS5 model, ensuring
consistent representation of both dry (negative SPEI) and wet (positive SPEI) extremes. The strong
correspondence between observed and adjusted datasets indicates that the CanESMS5 outputs, after
correction, are reliable for subsequent drought characterization and projection analysis.
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Fig. 2. Comparisons of observed, modeled, and bias-adjusted SPEI-03 distributions using histograms (top)
and kernel density estimates (bottom).

4.2. Observed drought characteristics (1985-2014)

Fig. 3 illustrates the spatial distribution of historical drought duration, severity, intensity, and
frequency across Uganda from 1985 to 2014, derived from SPEI-03. Observed drought duration (Fig.
3a) generally ranged between 2—4 months per event, with the longest durations (3—4 months)
concentrated in the Southern Uganda and parts of Lake Victoria basin. The north, eastern and central
regions exhibit relatively shorter events lasting 2—4 months. The spatial pattern of drought severity
(Fig. 3b) indicates that the northwestern and central parts of Uganda experienced the most severe
droughts, with mean severity values exceeding 1.5. In contrast, eastern and some parts of western
Uganda show lower severity, suggesting that droughts there tend to be milder and shorter-lived.

Drought intensity (Fig. 3¢), representing the average magnitude of water deficit per month, is
highest across northwestern and some localized western parts of the country, with mean values
approaching 0.7. Moderate intensity (0.4—0.6) occurs in the central, western, and parts of the Lake
Victoria basin, whereas the northeastern, western highlands, and localized areas around Lake Victoria
record the lowest intensities (=0.3). This spatial pattern indicates that drought events exert stronger
stress in the semi-arid north and southwestern subregions, consistent with their lower rainfall and
higher evapotranspiration regimes.

Drought frequency (Fig. 3d) ranges between 10% and 25%, with the highest recurrence (>20%)
observed across the northeastern, southern, southwestern, and Lake Victoria basin regions. The
central parts of Uganda exhibit moderate frequencies (10—15%). This spatial pattern corresponds with
historical records of recurrent droughts in the semi-arid north and the cattle corridor, highlighting
these areas as long-standing zones of climatic stress.
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Overall, the observed drought characteristics highlight a north—south gradient, with droughts
becoming more frequent, severe, and intense toward the semi-arid north while the central remain
relatively resilient. To further identify areas with spatial clustering of drought extremes, a hotspot
analysis was conducted using the Getis-Ord Gi statistic based on drought frequency.
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Fig. 3. Spatial distribution of observed drought characteristics across Uganda for 1985-2014 derived from
SPEI-03: (a) drought duration (months), (b) drought severity (unitless), (c) drought intensity (average severity
per drought month, S/D), and (d) drought frequency (%).

4.3. Observed drought hotspots

The observed drought hotspot analysis (Fig. 4) reveals distinct spatial clustering of historically
drought-prone areas across Uganda. Significant hotspots are concentrated in the northeastern and
eastern regions, covering parts of Teso, Lango, Acholi and much of Karamoja subregions. Additional
clusters appear around the southwestern areas, particularly the Ankole subregion. All these areas fall
within the famous Uganda’s cattle corridor which has been severally reported as a drought hotspot.
Another significant hotspot patch was revealed in the Lake Victoria basin. These areas represent zones
with higher drought intensity and frequency, indicating persistent exposure to recurrent dry
conditions. In contrast, most of central and northwestern Uganda show statistically insignificant
patterns, suggesting relatively lower drought clustering during the observation period.

4.4. Observed SPEI-03 drought trends

The spatial pattern of the observed SPEI-03 (Fig. 5) shows that most parts of Uganda
experienced increasing drought trends between 1985 and 2014. Results from the Mann—Kendall test
indicate that the northern and western regions had statistically significant positive trends (stippling in
Fig 5). This indicates that droughts have become more frequent and severe in these areas. The
strongest drying is observed in northern Uganda, particularly in the Lango and Acholi subregions,
where Sen’s slope values exceed 8 x 107° units month™". In contrast, some parts of the southwestern
highlands and the far northeast show decreasing drought tendencies, although these changes are not
statistically significant and do not suggest a reversal of the overall trend. Overall, the findings suggest
that Uganda has been getting progressively drier over the past four decades. The northern and western
regions stand out as the most drought-prone zones. These are key agricultural and pastoral areas,
implying growing vulnerability of rain-fed farming and livestock production to declining water
availability.
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Fig. 4. Spatial distribution of drought hotspots across Uganda based on the Getis-Ord Gi* statistic derived from
TerraClimate-based SPEI-03 data. Red areas indicate statistically significant drought hotspots (p < 0.05), blue
areas represent cold spots, and white areas are insignificant regions.
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Fig. 5. Historical trends in SPEI-03 droughts (1985-2014) across Uganda derived from TerraClimate data.
Stippling indicates areas where trends are statistically significant at p < 0.05 based on the Mann—Kendall test.

4.5. Projected drought characteristics

Projected drought characteristics exhibit substantial spatial and temporal variability across
Uganda under the three emission scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) and two future
periods (2041-2070 and 2071-2100). Generally, droughts are projected to become more frequent,
longer, and more severe under higher-emission scenarios, especially toward the late century.
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4.5.1. Duration

Projected drought duration shows distinct spatial and temporal variability across Uganda (Fig.
6). Under SSP1-2.6, droughts remain relatively short, averaging 1.5-2.5 months, with minimal spatial
change throughout the century. In contrast, SSP2-4.5 projects longer droughts, particularly in northern
Uganda, where the mean duration reaches 3—4 months during both mid- and late-century. Under
SSP5-8.5, prolonged drought episodes expand toward central and western Uganda by the late century,
with durations exceeding 3 months in several grid cells. Overall, longer drought events are projected
under higher-emission scenarios, emphasizing increased persistence of dry spells with rising radiative
forcing.
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Fig. 6. Projected spatial distribution of mean drought duration (months) for SPEI-03 drought events in Uganda
under three SSPs and two future periods. Top: mid-century (2041-2070); bottom: late-century (2071-2100).

4.5.2. Drought frequency

Projected drought frequency displays almost similar patterns in specific regions of the country
(Fig. 7). Generally, drought occurrence remains moderate (10—15%) in the central and northwestern
parts of the country throughout century. Higher recurrence is confined to the northeastern, southern
and southwestern parts (up to 25%).

4.5.3. Drought severity

Projected drought severity exhibits clear spatial heterogeneity across Uganda, with the northern
regions emerging as the most drought-prone areas (Fig. 8). During the mid-century period (2041—
2070), drought severity across Uganda remains moderate under SSP1-2.6, with most areas exhibiting
values below 1.5, except for localized areas of higher severity in the northwestern region. Under
SSP2-4.5, severity increases markedly in the north, exceeding 1.5, suggesting longer and more intense
dry episodes. Conversely, severity reduces under SSP5-8.5 for mid-century, showing values generally
below 1.5 across the country. By the late century (2071-2100), drought severity slightly weakens
nationwide under SSP1-2.6 and SSP2-4.5, indicating possible recovery under low-emission
stabilization. However, there is intensification of severity under SSP5-8.5 across most parts of the
country. The northwestern region experiences a clear intensification, with severity values surpassing
2.0, implying the occurrence of more extreme and prolonged droughts. Meanwhile, the southern and
parts of the central regions maintain lower severity levels. These findings reveal a northward shift and
amplification of drought severity under intermediate to high emission scenarios.
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Fig. 7. Projected spatial distribution of drought frequency (%) across Uganda under three SSP scenarios
for mid-century (2041-2070, top) and late century (2071-2100, bottom). Darker shades indicate higher drought
recurrence based on SPEI < -1
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Fig. 8. Projected spatial distribution of drought severity across Uganda under SSP1-2.6, SSP2-4.5, and
SSP5-8.5 for mid-century (2041-2070, top) and late-century (2071-2100, bottom). Darker shades indicate
higher drought severity.
4.5.4. Drought intensity

During the mid-century (2041-2070), drought intensity is highest in the northwestern parts, with
S/D values commonly between 0.5 and 0.8 under all the SSPs (Fig. 9). The central, western, and
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southern Uganda remains moderate (=0.3-0.5). By the late century (2071-2100), intensity increases
and broadens under SSP5-8.5, exhibiting the strongest amplification, with extensive areas in the north,
central, and eastern regions reaching S/D =0.7-1.0. These patterns indicate that, under higher
emissions, drought months are projected to become substantially more severe on average, posing
greater stress to agriculture and water resources.
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Fig. 9. Projected spatial distribution of drought intensity (average severity per drought month, S/D) for
mid-century (2041-2070, top row) and late-century (2071-2100, bottom row) under SSP1-2.6, SSP2-4.5 and
SSP5-8.5. Higher S/D values (darker red) indicate stronger average monthly drought deficits.

4.6. Projected hotspots

The Getis-Ord Gi* spatial statistic identified statistically significant and persistent drought
hotspots primarily concentrated in northeastern, western and southwestern Uganda for the entire
century (Fig. 10). This is particularly across the Karamoja, Kigezi and Ankole sub regions. These
regions, which form the core of Uganda’s cattle corridor, exhibited recurrent spatial clustering of high
drought intensity and frequency (p < 0.05). Additional hotspot clusters were observed around the
Lake Victoria basin, particularly under low emission scenarios for both mid and late centuries,
reflecting localized drought susceptibility in this humid zone. They become less extensive under high
emission scenarios.

The spatial persistence of these hotspots from the mid-century (2041-2070) to the late-century
(2071-2100) periods suggests a sustained spatial anomaly in drought occurrence relative to
surrounding areas. In certain areas, such as the northeastern and western zones, hotspots expand and
intensify. In others, particularly parts of the Lake Victoria basin and eastern Uganda, they shrink or
shift, suggesting evolving drought regimes.

The alignment of these statistically significant clusters with key agricultural and pastoral
landscapes indicates that drought risks in these regions are likely to remain recurrent under future
climatic conditions. This necessitates targeted adaptation strategies focused on water resource
management, livestock systems, and agricultural resilience.
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Fig. 10. Projected drought hotspot clusters (Getis-Ord Gi*, p < 0.05) for mid-century (2041-2070, top row)
and late-century (2071-2100, bottom row) under SSP1-2.6, SSP2-4.5 and SSP5-8.5. Red indicates statistically
significant drought hotspots; blue indicate cold spots and white indicates areas with insignificant hotspots.

4.7. Projected drought trends under different SSP scenarios

Projected SPEI-03 drought trends show marked spatial variability across Uganda, with the
direction and magnitude of change differing between the mid-century (2041-2070) and late-century
(2071-2100) periods across all emission scenarios (Fig. 11).

During the mid-century, drought occurrence significantly increases under SSP1-2.6, especially
across central and northern Uganda, including areas around Lake Kyoga and the upper northern
districts. Under SSP2-4.5, significant decreases in drought occurrence are projected across the
central-western stretch of the country, while isolated increases persist over the Kyoga—Teso
subregion. The high-emission SSP5-8.5 scenario, meanwhile, projects significantly decreasing
drought trends over the Karamoja region in northeastern Uganda, suggesting localized improvement
in short-term moisture conditions.

By the late century, the spatial configuration of droughts changes considerably. Under SSP1-
2.6, most of the country experiences decreasing drought trends, especially across the western
highlands, Lake Victoria basin, and northern zones. SSP2-4.5 exhibits a contrasting spatial pattern,
with increasing drought trends concentrated in eastern Uganda, while decreasing trends dominate the
West Nile. In contrast, the high-emission SSP5-8.5 scenario is dominated by significant increases in
drought occurrence across southern, western, southwestern, and northern Uganda. These widespread
positive trends indicate that droughts are projected to intensify and occur more frequently by the end
of the century. Overall, the strongest increasing trends are projected under SSP5-8.5 during the late-
century period, underscoring heightened drought risks under high-emission pathways.
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Fig. 11. Projected SPEI-03 trends across Uganda under SSP1-2.6, SSP2-4.5, and SSP5-8.5 for mid-
century (2041-2070) and late-century (2071-2100) periods. Stippled areas denote statistically significant
changes (p < 0.05).

5. DISCUSSION
5.1. Spatial and temporal dynamics of drought in Uganda

This study reveals that drought patterns in Uganda exhibit regional, scenario, and temporal
variations. Under SSP1-2.6, drought occurrence increases during the mid-century in central and
northern Uganda but decreases toward the late century. Under SSP2-4.5, droughts decrease in the
central and western regions during the mid-century, then increase in eastern Uganda by the late
century. Under SSP5-8.5, droughts decrease in Karamoja during the mid-century but become
widespread and intense across the north, west, and south toward the late century. These shifts reflect
the strong influence of rising temperatures and higher evapotranspiration (Ojara et al., 2024), which
can offset rainfall gains and produce uneven drought outcomes.

The semi-arid north remains the most sensitive region. Droughts there often last two to four
months and occur more frequently than in other parts of the country. This supports earlier evidence
that Karamoja and the surrounding districts face persistent agricultural and hydrological droughts
linked to short wet seasons and delayed rainfall onset (Byakatonda et al., 2021). Central and
northwestern Uganda also shows signs of increasing drought risk, in line with past assessments by
Kyatengerwa et al., (2020).

Hotspot analysis confirms that drought clusters remain strongest in the cattle corridor and extend
from southwestern Uganda through the west and into the northeast. These are critical regions that
support mixed farming and livestock. Mulinde et al., (2016) similarly identified the cattle corridor as
a major climate risk zone due to its frequent dry spells and limited water storage capacity. Nalwanga
et al., (2024) also reported that droughts in this region often persisted for several months, occasionally
extending over multiple years under high-emission conditions. The persistence of these hotspots
across scenarios and time periods suggests that drought risk is entrenched and unlikely to diminish.
The Lake Victoria basin also exhibits localised hotspots in several scenarios, highlighting the
sensitivity of this humid zone to short dry spells.
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Across the country, drought patterns do not follow a single direction. Some regions experience
temporary reductions in drought severity, particularly under SSP1-2.6 and mid-century SSP5-8.5,
while others show apparent intensification. This mixed response aligns with the East African climate
paradox, where rainfall may increase in parts of the region, but water stress still rises due to warming.
Uganda's future drought landscape will therefore be shaped by localised hotspots rather than uniform
drying. These areas, particularly the cattle corridor, Lake Victoria basin, and Karamoja, already
experience livelihood stress (Nalwanga et al., 2025). Therefore, they should remain priority zones for
targeted adaptation, improved water management, and climate-resilient livelihood strategies.

5.2. Contributions

High-resolution drought modelling using NEX GDDP CMIP6 downscaled to about 4 km for
detailed national analysis. Integration of multiple drought metrics and hotspot detection to identify
not only where droughts intensify but also where they cluster persistently in the whole country.

Scenario-based insights that show how drought patterns may diverge under low and high
emissions, providing valuable input for policy and planning. Clear linkage between mapped hotspots
and key livelihood zones that need targeted adaptation.

5.3. Limitations and future work

The analysis used a single GCM (CanESMS) from NEX-GDDP-CMIP6, which does not capture
inter-model variability and uncertainty. Although the spatial resolution was improved through
downscaling, localised microclimatic variations, especially in complex terrains such as highlands,
may not be fully resolved. Future work should utilise multi-model ensembles and incorporate soil
moisture, runoff, and vegetation indices to deepen the understanding. Linking drought metrics to crop
yield, livestock loss, and water supply impacts would strengthen the practical value of the results.
Including socioeconomic exposure and vulnerability data would also improve national drought risk
assessments.

6. CONCLUSIONS

This study provides a national-scale assessment of historical and future droughts in Uganda using
bias-adjusted CanESM5 data and SPEI. The combination of TerraClimate observations and
downscaled projections produced a consistent picture of drought behavior across the country.
Historical analysis shows strong drying in the north and parts of central Uganda. Future patterns differ
across scenarios and time periods. Under SSP1-2.6, drought conditions remain mild except for a mid-
century increase in central and northern Uganda. Under SSP2-4.5, droughts decrease in the central
west during the mid-century but increase in eastern Uganda toward the late century. Under SSP5-8.5,
droughts weaken in Karamoja during the mid-century but intensify across the north, west, and south
by the end of the century.

Hotspot analysis reveals persistent clusters along the cattle corridor, extending from the Ankole
and Kigezi regions to the west, through to Karamoja. These clusters indicate long-term drought stress
in areas that depend on rainfed farming and pastoralism. The duration and frequency of droughts in
these zones point to limited recovery capacity under future warming. Uganda's drought future is
therefore uneven, with risks concentrated in specific agroecological regions. These findings support
the need for locally tailored adaptation strategies and improved water management. They also
emphasize the importance of integrating fine-scale climate information with agricultural systems,
livestock, and livelihood resilience planning.
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