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ABSTRACT 

Drought is one of the most recurrent and damaging climate extremes in Uganda, affecting agriculture, 

water resources, and livelihoods. However, its future trends under changing climate conditions remain 

poorly understood. This study analyzed historical and projected drought characteristics across Uganda. 

We used the Standardized Precipitation–Evapotranspiration Index (SPEI) derived from the bias-

corrected CanESM5 model within the NASA Earth Exchange Global Daily Downscaled Projections 

(NEX-GDDP-CMIP6) framework. Three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and 

SSP5-8.5) representing low, medium, and high emissions scenarios were considered. Terra-Climate 

data for 1985–2014 were used for bias correction and validation. Drought duration, frequency, severity, 

and intensity were calculated from 3-month SPEI, and spatial clustering was assessed using the Getis-

Ord Gi* statistic. Historical analysis shows drying trends in northern and central Uganda. Future 

projections reveal spatially heterogeneous drought responses. During the mid-century (2041–2070), 

drought occurrence increases under SSP1-2.6 in central and northern regions but decreases under 

SSP2-4.5 in the central-west and under SSP5-8.5 in Karamoja. Toward the late century (2071–2100), 

SSP1-2.6 indicates a general decline in drought occurrence, SSP2-4.5 shows increasing droughts in the 

east and reductions in the northwest, and SSP5-8.5 projects widespread intensification across southern, 

western, and northern Uganda. Hotspot analysis identifies persistent drought clusters along the cattle 

corridor, extending from the Ankole–Kigezi regions and Karamoja. These findings provide a detailed 

understanding of Uganda’s evolving drought risks and support targeted adaptation planning, water 

resource management, and climate-resilient livelihood strategies. 
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1. INTRODUCTION 

Droughts are among the most complex and devastating environmental hazards worldwide, 

evolving slowly yet with long-lasting ecological and socioeconomic consequences. Unlike sudden 

extreme events such as floods or hurricanes, droughts evolve slowly, persisting for months or years 

and affecting vast areas (Krishna Prabhakar, 2022; Orimoloye et al., 2022). Their gradual onset makes 

detection, monitoring, and management particularly challenging. Intensifying climate change is 

projected to exacerbate both the frequency and severity of droughts, heightening risks for vulnerable 

regions (IPCC, 2022). 
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Sub-Saharan Africa faces a disproportionate drought burden due to structural vulnerabilities such 

as poverty, dependence on rainfed agriculture, and limited adaptive capacity (Lombe et al., 2024; 

Voda et al., 2019). Recurrent droughts have reduced agricultural productivity, disrupted livelihoods, 

and deepened food insecurity (Onyeaka et al., 2024). These events also drive water scarcity and rural-

urban migration. This intensifies competition for limited resources and puts pressure on urban 

infrastructure (Calverley and Walther, 2022; Ceola et al., 2023; Li et al., 2023). Recent studies 

indicate an upward trend in drought frequency and intensity across Africa, driven by reduced 

precipitation and rising evapotranspiration (Elkouk et al., 2021; Han et al., 2022; Mathivha et al., 

2024; Orke and Li, 2022; Satoh et al., 2022; R Ssembajwe, Nguefack, et al., 2025; Uwimbabazi et 

al., 2022).  

Uganda exemplifies this regional vulnerability. Nearly 80 percent of households in Uganda rely 

on agriculture as their main economic activity (UBOS, 2024), and most of this agriculture is rainfed. 

As a result, the country’s economy and food systems are highly sensitive to rainfall variability. 

Despite the increasing frequency and impacts of drought, most research efforts in Uganda have 

remained localized, focusing on specific districts or regions and relying largely on a single 

meteorological variable such as precipitation (Byakatonda et al., 2021; Kyatengerwa et al., 2020; 

Mulinde et al., 2016; Najjuma et al., 2021; Nakalembe, 2018; Nalwanga et al., 2024; Onyutha and 

Kerudong, 2022). While such studies provide valuable local insights, they lack the spatial continuity, 

resolution, and bias correction consistency required for robust national-scale projections (Voda AI et 

al., 2018). Furthermore, it is not clear how the projected warming will affect regional and local water 

balances especially in countries like Uganda where the vulnerability is high. 

The availability of advanced downscaled climate model datasets now provides new opportunities 

to address these limitations. The NASA Earth Exchange Global Daily Downscaled Projections based 

on CMIP6 (NEX-GDDP-CMIP6) is one such datasets. This dataset offers bias-corrected and 

statistically downscaled data for up to 16 climate variables at approximately 25 km spatial resolution 

for the period 1950–2100 (Thrasher et al., 2022). It has been successfully applied in several regions 

to assess hydrological and climatic extremes. For example, it has been used to project rainfall 

variability in the Brazilian Amazon and Cerrado (de Mendonça et al., 2024), temperature and 

precipitation changes in China (Wu et al., 2023), and extreme weather indices across the Arabian 

Peninsula and the UAE (Baogang et al., 2024; Rao et al., 2024; Vinodhkumar et al., 2024). In Africa, 

it has demonstrated skill in reproducing observed precipitation patterns, though regional performance 

varies with the reference dataset used (Samuel et al., 2025). In Uganda, (Ronald Ssembajwe et al., 

2025) used it to track future atmospheric circulations such as wind and humidity. However, its 

potential in simulating droughts especially based on the water balance remains largely unexplored in 

Uganda. 

This study employs the bias-adjusted and statistically downscaled NEX-GDDP-CMIP6 

CanESM5 model to project future drought dynamics in Uganda based on scale 3 SPEI. Specifically, 

it aims to (1) simulate and validate historical droughts using TerraClimate-based SPEI droughts as a 

reference, (2) analyse historical and future drought characteristics and long-term trends based on 

SSP1-2.6, SSP2-4.5 and SSP5-8.5, and (3) identify historical and future spatial drought hotspots. By 

integrating advanced CMIP6 projections with observational datasets, this study provides new insights 

to inform climate-resilient development, drought preparedness, and formulation of effective national 

adaptation strategies.  

2. STUDY AREA  

This study was conducted in Uganda, an inland country located in East Africa along the equator 

(Byamukama et al., 2025). It lies between longitudes 29°E and 35.2°E and latitudes 4.5°N and 1.5°S 

(Fig. 1). Uganda covers 241,551 km² (UBOS, 2025) and is bordered by Kenya, South Sudan, the 

Democratic Republic of Congo, Tanzania, and Rwanda. 

The country’s terrain is diverse, consisting of elevated plateaus, highlands, and extensive 

wetlands. Prominent features include the Rwenzori Mountains in the west, Mount Elgon in the east, 

and the Albertine Rift Valley. Major lakes such as Victoria, Kyoga, and Albert, together with the 
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River Nile, play a key role in influencing local convection and humidity, resulting in spatial variability 

in rainfall patterns. 

Uganda’s climate is shaped by the seasonal migration of the Intertropical Convergence Zone 

(ITCZ), monsoon systems, and large-scale circulation patterns (Jury, 2018). The country experiences 

a bimodal rainfall regime, with the long rains from March to May (MAM) and short rains from 

September to November (SON) (Ngoma et al., 2021). Annual rainfall ranges from about 500 mm in 

the semi-arid northeast to more than 2,000 mm in the southern and western highlands (Nuwagira and 

Yasin, 2022). The mean near-surface annual temperature is approximately 21°C, with monthly values 

ranging from 15°C in July to 30°C in February (Nsubuga and Rautenbach, 2018). 

 

 

Fig. 1. Map showing location of Uganda in Africa, the four major regions, major lakes, and river networks that 

influence regional climatic and hydrological patterns. 

3. DATA AND METHODS 

3.1. Data acquisition 

3.1.1. CanESM5 projected data 

We used NEX-GDDP-CMIP6, the latest version of NASA’s global downscaled climate 

projection product. NEX-GDDP-CMIP6 provides bias-corrected and statistically downscaled daily 

climate projections from CMIP6 models at a 0.25° × 0.25° (~25 km) spatial resolution (Thrasher et 

al., 2022). The NEX-GDDP scheme uses the bias correction and statistical downscaling (BCSD) 

method to downscale global climate models (GCMs) from parent coarse resolutions ranging from 1◦ 

× 1◦ to 2.5◦ × 2.5◦ to a finer 0.25◦ × 0.25◦ (Ronald Ssembajwe et al., 2025). The dataset covers a 

reference period (1950–2014) and future projections (2015–2100) under Shared Socioeconomic 

Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). For consistency with TerraClimate, the 

1985–2014 period was used as the reference period. The dataset is publicly available through NASA’s 

Earth Exchange platform at https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-

CMIP6/catalog.html.  

https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html
https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html
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For this study, we selected CanESM5 model based on its demonstrated skill in reproducing East 

African climate regimes and their associated drivers such as El Nino Southern Oscillations, Dipole 

modes and orientation and strength of high-pressure cells (Ayugi et al., 2022; Dufatanye Umwali et 

al., 2024). Thus, we obtained CanESM5 daily downscaled and bias-corrected climate variables from 

the NEX-GDDP-CMIP6 archive for SPEI computation. This included precipitation (P) and mean air 

temperature, relative humidity (RH), 2-m wind speed, and downwelling shortwave radiation. All data 

were accessed in NetCDF format for both the historical (1985–2014) and future (2041–2070 and 

2071–2100) periods. Although multi-model ensembles provide a wider uncertainty range (Akinsanola 

et al., 2021), we used a single, well-performing earth systems model. This  allowed a detailed bias-

adjusted analysis while ensuring computational efficiency in dataset handling. 

3.1.2. CanESM5 projected data 

Monthly precipitation and potential evapotranspiration (PET) from TerraClimate were used as 

reference data for model validation and bias correction. TerraClimate provides globally consistent 4 

km gridded climate data. It integrates the University of East Anglia CRU TS dataset, JRA-55 

reanalysis, and WorldClim datasets, effectively capturing both long-term climatological means and 

monthly anomalies (Abatzoglou et al., 2018). Its integration of ground, satellite, and reanalysis data 

ensures high consistency and spatial detail, making it well-suited for regional drought analysis, 

particularly in data-sparse regions such as Uganda. TerraClimate has been widely validated and 

shown to perform well against station-based and reanalysis datasets, making it suitable for near-

surface climate variability and water balance studies (Kolling Neto et al., 2024). For East Africa, 

studies like Kobusinge et al., (2024) and Ronald Ssembajwe et al., (2025) have relied on it for 

hydrological and agroclimatic assessments.  A recent validation study against station observations by 

R Ssembajwe, Ngatia, et al., (2025) has shown Terra-Climate’s reliability in reproducing the 

climatology of hydrothermal variables such as temperature, humidity and vapor pressure deficit over 

East Africa thus, justifying its adoption.  

The dataset was accessed at http://www.climatologylab.org/terraclimate.html. Additionally, the 

ASTER Global Digital Elevation Model (DEM) at 30 m spatial resolution was used to derive surface 

atmospheric pressure for the FAO-56 Penman–Monteith PET computation. 

3.2. Preprocessing  

3.2.1. Data curation and quality control 

All climate datasets were processed within the MATLAB R2025b environment. The NEX-

GDDP-CMIP6 data were obtained as single year NetCDF files and concatenated into continuous 30-

year time series for each climate variable per period: 1985-2014, 2041-2070 and 2071-2100. The 

datasets were then spatially subset and masked to Uganda’s administrative boundaries using 

MATLAB’s spatial masking tools. Because the NEX-GDDP-CMIP6 grid (~25 km) differed from the 

Terra-Climate grid (~4 km), a second-order conservative regridding technique was applied to align 

the CanESM5 data with the reference Terra-Climate resolution. We then explored the datasets for 

completeness and validity using isnan function and logical operators, respectively. The completeness 

test indicated no missing values.  

3.2.2. Computation of PET and SPEI 

3.2.2.1. Potential Evapotranspiration 

The modified FAO56 (Penman-Monteith) method (equation 1) was applied to compute 

historical simulated and future PET using daily air mean temperature, RH, downwelling shortwave 

radiation, windspeed, and surface pressure derived from the DEM. We chose FAO56 because of its 

robustness over humid equatorial regions like Uganda (Ssembajwe et al., 2024), and its global 

recommendation as the empirical standard for PET computation (Allen et al., 1998). The FAO56 

Penman-Monteith equation is expressed as: 

http://www.climatologylab.org/terraclimate.html
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𝑃𝐸𝑇 =
0.408𝛥(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑈2(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾(1 + 0.34𝑢2)
                                                                         (1) 

where PET is the potential evapotranspiration (mm day⁻¹), Rn is the net radiation at the crop 

surface (MJ m⁻² day⁻¹), G is soil heat flux density (MJ m⁻² day⁻¹), T is mean daily air temperature at 

2 m height (°C), u₂ is wind speed at 2 m height (m s⁻¹), eₛ is saturation vapor pressure (kPa), eₐ is 

actual vapor pressure (kPa), (eₛ – eₐ) is vapor pressure deficit (kPa), Δ is slope of the saturation vapor 

pressure–temperature curve (kPa °C⁻¹) and γ is psychrometric constant (kPa °C⁻¹). All intermediate 

parameters were computed following the FAO-56 guidelines (Allen et al., 1998). 

Daily PET and precipitation from CanESM5 were aggregated to monthly means to maintain 

temporal consistency with TerraClimate. The process involves binning daily precipitation and PET 

datasets into annual and monthly cycles based on the time/datetime vector corresponding to each 

dataset using the unique function in MATLAB (R Ssembajwe, Twah, et al., 2025). The outputs are 

then reshaped to the original dimensions and aggregated according to each month’s length using a for 

loop. The resulting monthly PET and precipitation series were subsequently used in the computation 

of SPEI. 

3.2.2.2. Standardized Precipitation-Evapotranspiration Index (SPEI) 

SPEI, developed by Vicente-Serrano et al., (2010), is a widely applied multiscalar drought index 

that integrates both precipitation and PET to provide a more comprehensive measure of drought 

conditions. Unlike the Standardized Precipitation Index (SPI), which relies solely on precipitation, 

SPEI incorporates temperature-driven evapotranspiration, making it particularly relevant for 

assessing droughts under a changing climate (Vicente-Serrano et al., 2010; Wang et al., 2021). Its 

sensitivity to both moisture deficits and warming trends allows it to detect drought onset, persistence, 

and intensity across multiple timescales, from short-term agricultural droughts to long-term 

hydrological droughts (Wang et al., 2021). 

In this study, we applied SPEI at a 3-month timescale (SPEI-03) to account for vegetation’s 

delayed response to shocks and seasonal variability. This choice reflects Uganda’s bimodal rainfall 

regime, where the March–May and September–November rainy seasons are critical for agriculture 

and water availability. Shorter timescales (1–3 months) have been shown to effectively characterize 

meteorological and agricultural droughts, which directly impact soil moisture and crop production 

(Vicente-Serrano et al., 2010). Previous East African drought studies have also adopted 3-month 

drought indices to assess seasonal drought dynamics in regions with strong rainfall seasonality (Ayugi 

et al., 2022). 

The SPEI was computed by first estimating the monthly climate water balance, D, as the 

difference between precipitation (P) and PET (equation 2). 

 

𝐷 = 𝑃 − 𝑃𝐸𝑇                                                                                                                                            (2) 

where D is the monthly water balance (deficit or surplus in mm), P is the total monthly 

precipitation (mm), and PET is the potential evapotranspiration for the same month (mm). Positive 

values of D indicate moisture surplus (conditions are wetter than normal), while negative values 

reflect deficits, signifying drought conditions.  

The accumulated water balance series (D) were fitted to a log-logistic probability distribution, 

following Vicente-Serrano et al., (2010). The probability density function is expressed as in equation 

(3). 

 

𝑓(𝑥) =
𝛽

𝛼
(

𝑥 − 𝛾

𝛼
) [1 + (

𝑥 − 𝛾

𝛼
)]

−2

                                                                                                    (3) 
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where f(x) is the cumulative probability function of x (the water balance deficit D), α, β, and γ 

are the scale, shape, and location parameters of the distribution, respectively for D values in the range 

(γ< 𝑥<∞).  

Parameters of the log-logistic distribution can be estimated following the L-moment procedure 

(Ahmad et al., 1988). Hence, the probability distribution function of the D series, according to the 

log-logistic distribution, is given by equation (4). 

 

𝐹(𝑥) = [1 + (
𝛼

𝑥 − 𝛾
)

𝛽

]

−1

                                                                                                                         (4) 

 

After fitting the distribution, the water balance values are transformed into standardized SPEI 

values. These standardized values enable comparisons across different time periods and regions. As 

described by Vicente-Serrano et al., (2010), the SPEI is obtained by standardizing values of F(𝑥) as 

in equation (5) 

 

𝑆𝑃𝐸𝐼 = 𝑤 −
𝑐0 + 𝐶𝑤 + 𝐶2𝑤2

1 + 𝑑1𝑤 + 𝑑2𝑤2 + 𝑑3𝑤3
                                                                                              (5) 

 

when P≤0.5,  𝑤 = √−2 𝑙𝑛(𝑃)  and when P>0.5,   𝑤 = √−2 𝑙𝑛(1 − 𝑃) 

where C0 = 2.5155, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 

0.001308. All these parameters are defined in the study by Vicente-Serrano et al., (2010). 

The negative and positive SPEI values indicate dry and wet conditions, respectively. Table 1 

summarizes the category of dry and wet conditions based on SPEI values following the description 

by Mckee et al., (1993). 
                                                                                                                 Table 1 

Categories of dry and wet conditions indicated by SPEI values. 

SPEI value Category  

2 and above Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

−1.0 to −1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

3.3. Data analysis   

3.3.1. Empirical Quantile Mapping (EQM) for SPEI bias correction 

Although the NEX-GDDP-CMIP6 data used for SPEI computation were already downscaled 

and bias-corrected, we applied an additional correction to further align CanESM5-simulated SPEI 

values  with the TerraClimate-based SPEI. This was achieved using the EQM technique.  

EQM corrects systematic deviations by mapping the cumulative distribution function (CDF) of 

the model outputs to that of the reference dataset (Li et al., 2023; Niranjan Kumar et al., 2022; 

Ernawati et al., 2018). Unlike parametric approaches, EQM does not assume a specific theoretical 

distribution for the data (Niranjan Kumar et al., 2022). This makes it suitable for climate variables 

such as precipitation and SPEI that often exhibit skewed or multimodal behavior. Mathematically, the 

bias-adjusted value 𝑥𝑎  can be expressed by equation (6). 

𝑥𝑎 = 𝐹𝑜
−1(𝐹𝑚(𝑥𝑚))                                                                                                                                (6) 
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where 𝐹𝑚 and 𝐹𝑜
−1 and represent the empirical cumulative distribution and its inverse for the 

model and observed datasets, respectively. 

The corrected SPEI outputs were validated against TerraClimate-based SPEI for the historical 

period using histogram and kernel density estimation (KDE) plots. This helped to assess distributional 

consistency. It was also validated through grid-level time series comparisons to evaluate temporal 

coherence. 

3.3.2. Drought characteristics  

Drought events were identified using the run theory approach as proposed by Li et al. 

(Yevjevich, 1967). A run is the portion of all values in a time series that is below or above a cutoff 

threshold. Here, sequences of consecutive periods during which the drought index remained below -

1 (SPEI ≤ –1) were isolated. Each continuous sequence below this threshold was defined as a single 

drought event, beginning at the onset (first month below –1) and ending when SPEI exceeded –1. 

This approach allowed for the systematic identification and quantification of individual drought 

events from a continuous SPEI time series. After identifying drought events, key drought 

characteristics including duration, severity, intensity, and frequency were computed using equations 

(7–10).  

i. Drought Duration (DD) refers to the number of consecutive months from onset (SPEI≤-1) 

until cessation (SPEI > -1). Average drought duration across the study period was calculated 

using equation (7). 

𝐷𝐷̅̅ ̅̅ =
∑ 𝐷𝐷𝑖𝑁

𝑖=1

𝑁
                                                                                                                              (7) 

where 𝑖 is the event and N is the total number of drought events 

ii. Drought Severity (DS) refers to the cumulative magnitude of drought over its duration, 

defined as the absolute sum of SPEI values below the threshold as in equation (8). 

DS = ∑ |𝑆𝑃𝐸𝐼𝑡|      

𝑡𝑒𝑛𝑑

𝑡=𝑡𝑠𝑡𝑎𝑡

                                                                                                                  (8) 

where 𝑺𝑃𝐸𝐼𝑡  is the SPEI value at time 𝑡 and N is the duration of the drought in months  

iii. Drought Intensity (DI) refers to the average severity per month during a drought event and 

is given by equation (9). 

𝐷𝐼 =
𝐷𝑆

𝐷𝐷
                                                                                                                                          (9) 

iv. Drought Frequency (DF) refers to the number of drought events relative to the length of the 

study period, given by equation (10). 

𝐷𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑟𝑜𝑢𝑔ℎ𝑡 𝑒𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠
                                                                                        (10) 

3.3.3. Hotspot analysis  

Spatial hotspots of drought intensity and frequency were identified using the Getis-Ord Gi* 

statistic (Getis and Ord, 1992) implemented, in MATLAB R2025b. The method detects statistically 

significant clusters by comparing the local sum of each grid cell and its neighbors to the global mean 

of the study area (Nejadrekabi et al., 2021; Rousta et al., 2017). The Gi* statistic measures whether 

high or low values occur together in space more often than would be expected by random chance, 

thereby highlighting hotspots (clusters of high drought values) and coldspots (clusters of low drought 

values). The Getis-Ord Gi* statistic is given by Equation (11) with its terms defined by equations (12) 

and (13). 
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𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑥𝑗
𝑛

𝑗=1
− 𝑥̅ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝑆
√𝑛 ∑ 𝑤𝑖𝑗

𝑛

𝑗=1
− (∑ 𝑤𝑖𝑗

𝑛

𝑗=1
)

2

𝑛 − 1

                                                                                       (11) 

𝑋̅ =
1

𝑛
∑ 𝑥𝑗

𝑛

𝑗=1

                                                                                                                                      (12) 

𝑆 = √
1

𝑛
∑ 𝑥𝑗

2
𝑛

𝑗=1
− (𝑥̅)2                                                                                               (13) 

where 𝐺𝑖
∗is the Getis-Ord local statistic for location i, 𝑥𝑗 is the drought variable value at location 

j. 𝑤𝑖𝑗  is the spatial weight between locations i and j, n is the total number of locations (grid cells), 𝑋̅ 

is the mean of all 𝑥𝑗 and S is the standard deviation of 𝑥𝑗. The weights 𝑤𝑖𝑗  define spatial proximity 

based on a fixed-distance band, such that nearby grid cells exert stronger influence on Gi* values. 

Each grid cell receives a Z-score indicating the degree of spatial clustering. High positive Z-

scores denote hotspots (areas with significantly high drought values), whereas negative Z-scores 

indicate coldspots (areas with low drought values). Z-scores close to zero reflect random spatial 

patterns. Statistical significance was evaluated at p < 0.05, with larger absolute Z-scores 

corresponding to stronger spatial clustering. 

The Getis-Ord Gi* method was selected because it effectively captures localized spatial 

dependence, accounting for both the magnitude and spatial context of drought indicators. Compared 

with global statistics such as Moran’s I, Gi* detects fine-scale clustering of extremes (Akhter and 

Afroz, 2024; Nejadrekabi et al., 2021), making it particularly suitable for identifying regions with 

persistently high drought stress. This approach has been widely used in environmental and climate 

risk analyses for detecting areas of recurrent hazard concentration (Azeez et al., 2025; Nejadrekabi et 

al., 2021; Rousta et al., 2017). 

3.3.4. Trend analysis  

Temporal trends in SPEI and derived drought characteristics were analyzed using the Mann–

Kendall test (Kendall, 1975; Mann, 1945; Haidu, 1997; Haidu & Magyari-Sáska, 2009) and Sen’s 

slope estimator (Sen, 1968). The Mann–Kendall test is a non-parametric approach that determines the 

direction and significance of trends without requiring data normality. It is robust to missing values 

and outliers, making it suitable for climatological time series. Sen’s slope estimator provides the rate 

of change by computing the median of all pairwise slopes between observations, thereby reducing the 

influence of extreme values and non-uniform sampling. All results were visualized in MATLAB’s 

geospatial mapping toolbox using interpolation and k-means clustering to enhance spatial 

representation. 

4. RESULTS  

4.1. Model bias correction and validation 

Fig. 2 illustrates the distributional comparison between observed, modelled, and bias-adjusted 

SPEI-03 values. The upper panel shows histograms, while the lower panel presents the corresponding 

KDE. Before bias correction, both historical and future modelled SPEI values exhibited systematic 

deviations from the observed distribution, with noticeable shifts around the mean and differences in 

tail behaviour. After applying EQM, the bias-adjusted SPEI distributions closely matched the 

observed pattern across the entire range of values. The KDE curves demonstrate a strong overlap 

between the observed (black line) and the historical bias-adjusted (purple) and future (blue) series. 
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This indicates a substantial correction of mean and variance biases. This alignment suggests that the 

EQM approach effectively removed systematic errors associated with the CanESM5 model, ensuring 

consistent representation of both dry (negative SPEI) and wet (positive SPEI) extremes. The strong 

correspondence between observed and adjusted datasets indicates that the CanESM5 outputs, after 

correction, are reliable for subsequent drought characterization and projection analysis. 

    

 
 

Fig. 2. Comparisons of observed, modeled, and bias-adjusted SPEI-03 distributions using histograms (top) 

and kernel density estimates (bottom). 

4.2. Observed drought characteristics (1985-2014) 

Fig. 3 illustrates the spatial distribution of historical drought duration, severity, intensity, and 

frequency across Uganda from 1985 to 2014, derived from SPEI-03. Observed drought duration (Fig. 

3a) generally ranged between 2–4 months per event, with the longest durations (3–4 months) 

concentrated in the Southern Uganda and parts of Lake Victoria basin. The north, eastern and central 

regions exhibit relatively shorter events lasting 2–4 months. The spatial pattern of drought severity 

(Fig. 3b) indicates that the northwestern and central parts of Uganda experienced the most severe 

droughts, with mean severity values exceeding 1.5. In contrast, eastern and some parts of western 

Uganda show lower severity, suggesting that droughts there tend to be milder and shorter-lived. 

Drought intensity (Fig. 3c), representing the average magnitude of water deficit per month, is 

highest across northwestern and some localized western parts of the country, with mean values 

approaching 0.7. Moderate intensity (0.4–0.6) occurs in the central, western, and parts of the Lake 

Victoria basin, whereas the northeastern, western highlands, and localized areas around Lake Victoria 

record the lowest intensities (≈0.3). This spatial pattern indicates that drought events exert stronger 

stress in the semi-arid north and southwestern subregions, consistent with their lower rainfall and 

higher evapotranspiration regimes. 

Drought frequency (Fig. 3d) ranges between 10% and 25%, with the highest recurrence (>20%) 

observed across the northeastern, southern, southwestern, and Lake Victoria basin regions. The 

central parts of Uganda exhibit moderate frequencies (10–15%). This spatial pattern corresponds with 

historical records of recurrent droughts in the semi-arid north and the cattle corridor, highlighting 

these areas as long-standing zones of climatic stress. 
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Overall, the observed drought characteristics highlight a north–south gradient, with droughts 

becoming more frequent, severe, and intense toward the semi-arid north while the central remain 

relatively resilient. To further identify areas with spatial clustering of drought extremes, a hotspot 

analysis was conducted using the Getis-Ord Gi statistic based on drought frequency. 

 
Fig. 3. Spatial distribution of observed drought characteristics across Uganda for 1985–2014 derived from 

SPEI-03: (a) drought duration (months), (b) drought severity (unitless), (c) drought intensity (average severity 

per drought month, S/D), and (d) drought frequency (%). 

4.3. Observed drought hotspots 

The observed drought hotspot analysis (Fig. 4) reveals distinct spatial clustering of historically 

drought-prone areas across Uganda. Significant hotspots are concentrated in the northeastern and 

eastern regions, covering parts of Teso, Lango, Acholi and much of Karamoja subregions. Additional 

clusters appear around the southwestern areas, particularly the Ankole subregion. All these areas fall 

within the famous Uganda’s cattle corridor which has been severally reported as a drought hotspot. 

Another significant hotspot patch was revealed in the Lake Victoria basin. These areas represent zones 

with higher drought intensity and frequency, indicating persistent exposure to recurrent dry 

conditions. In contrast, most of central and northwestern Uganda show statistically insignificant 

patterns, suggesting relatively lower drought clustering during the observation period. 

4.4. Observed SPEI-03 drought trends 

The spatial pattern of the observed SPEI-03 (Fig. 5) shows that most parts of Uganda 

experienced increasing drought trends between 1985 and 2014. Results from the Mann–Kendall test 

indicate that the northern and western regions had statistically significant positive trends (stippling in 

Fig 5). This indicates that droughts have become more frequent and severe in these areas. The 

strongest drying is observed in northern Uganda, particularly in the Lango and Acholi subregions, 

where Sen’s slope values exceed 8 × 10⁻⁵ units month⁻¹. In contrast, some parts of the southwestern 

highlands and the far northeast show decreasing drought tendencies, although these changes are not 

statistically significant and do not suggest a reversal of the overall trend. Overall, the findings suggest 

that Uganda has been getting progressively drier over the past four decades. The northern and western 

regions stand out as the most drought-prone zones. These are key agricultural and pastoral areas, 

implying growing vulnerability of rain-fed farming and livestock production to declining water 

availability. 
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Fig. 4. Spatial distribution of drought hotspots across Uganda based on the Getis-Ord Gi* statistic derived from 

TerraClimate-based SPEI-03 data. Red areas indicate statistically significant drought hotspots (p < 0.05), blue 

areas represent cold spots, and white areas are insignificant regions. 

 

 

Fig. 5. Historical trends in SPEI-03 droughts (1985–2014) across Uganda derived from TerraClimate data. 

Stippling indicates areas where trends are statistically significant at p < 0.05 based on the Mann–Kendall test. 
 

4.5. Projected drought characteristics 

Projected drought characteristics exhibit substantial spatial and temporal variability across 

Uganda under the three emission scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) and two future 

periods (2041–2070 and 2071–2100). Generally, droughts are projected to become more frequent, 

longer, and more severe under higher-emission scenarios, especially toward the late century. 
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4.5.1. Duration 

Projected drought duration shows distinct spatial and temporal variability across Uganda (Fig. 

6). Under SSP1-2.6, droughts remain relatively short, averaging 1.5–2.5 months, with minimal spatial 

change throughout the century. In contrast, SSP2-4.5 projects longer droughts, particularly in northern 

Uganda, where the mean duration reaches 3–4 months during both mid- and late-century. Under 

SSP5-8.5, prolonged drought episodes expand toward central and western Uganda by the late century, 

with durations exceeding 3 months in several grid cells. Overall, longer drought events are projected 

under higher-emission scenarios, emphasizing increased persistence of dry spells with rising radiative 

forcing. 

 
Fig. 6. Projected spatial distribution of mean drought duration (months) for SPEI-03 drought events in Uganda 

under three SSPs and two future periods. Top: mid-century (2041–2070); bottom: late-century (2071–2100). 

4.5.2. Drought frequency  

Projected drought frequency displays almost similar patterns in specific regions of the country 

(Fig. 7). Generally, drought occurrence remains moderate (10–15%) in the central and northwestern 

parts of the country throughout century. Higher recurrence is confined to the northeastern, southern 

and southwestern parts (up to 25%).  

4.5.3. Drought severity  

Projected drought severity exhibits clear spatial heterogeneity across Uganda, with the northern 

regions emerging as the most drought-prone areas (Fig. 8). During the mid-century period (2041–

2070), drought severity across Uganda remains moderate under SSP1-2.6, with most areas exhibiting 

values below 1.5, except for localized areas of higher severity in the northwestern region. Under 

SSP2-4.5, severity increases markedly in the north, exceeding 1.5, suggesting longer and more intense 

dry episodes. Conversely, severity reduces under SSP5-8.5 for mid-century, showing values generally 

below 1.5 across the country. By the late century (2071–2100), drought severity slightly weakens 

nationwide under SSP1-2.6 and SSP2-4.5, indicating possible recovery under low-emission 

stabilization. However, there is intensification of severity under SSP5-8.5 across most parts of the 

country. The northwestern region experiences a clear intensification, with severity values surpassing 

2.0, implying the occurrence of more extreme and prolonged droughts. Meanwhile, the southern and 

parts of the central regions maintain lower severity levels. These findings reveal a northward shift and 

amplification of drought severity under intermediate to high emission scenarios. 
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Fig. 7. Projected spatial distribution of drought frequency (%) across Uganda under three SSP scenarios 

for mid-century (2041-2070, top) and late century (2071-2100, bottom). Darker shades indicate higher drought 

recurrence based on SPEI ≤ –1 

 
Fig. 8. Projected spatial distribution of drought severity across Uganda under SSP1-2.6, SSP2-4.5, and 

SSP5-8.5 for mid-century (2041–2070, top) and late-century (2071–2100, bottom). Darker shades indicate 

higher drought severity. 

4.5.4. Drought intensity 

During the mid-century (2041–2070), drought intensity is highest in the northwestern parts, with 

S/D values commonly between 0.5 and 0.8 under all the SSPs (Fig. 9). The central, western, and  
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southern Uganda remains moderate (≈0.3–0.5). By the late century (2071–2100), intensity increases 

and broadens under SSP5-8.5, exhibiting the strongest amplification, with extensive areas in the north, 

central, and eastern regions reaching S/D ≈0.7–1.0. These patterns indicate that, under higher 

emissions, drought months are projected to become substantially more severe on average, posing 

greater stress to agriculture and water resources.  

 
Fig. 9. Projected spatial distribution of drought intensity (average severity per drought month, S/D) for 

mid-century (2041–2070, top row) and late-century (2071–2100, bottom row) under SSP1-2.6, SSP2-4.5 and 

SSP5-8.5. Higher S/D values (darker red) indicate stronger average monthly drought deficits.  

4.6. Projected hotspots 

The Getis-Ord Gi* spatial statistic identified statistically significant and persistent drought 

hotspots primarily concentrated in northeastern, western and southwestern Uganda for the entire 

century (Fig. 10). This is particularly across the Karamoja, Kigezi and Ankole sub regions. These 

regions, which form the core of Uganda’s cattle corridor, exhibited recurrent spatial clustering of high 

drought intensity and frequency (p < 0.05). Additional hotspot clusters were observed around the 

Lake Victoria basin, particularly under low emission scenarios for both mid and late centuries, 

reflecting localized drought susceptibility in this humid zone. They become less extensive under high 

emission scenarios.  

The spatial persistence of these hotspots from the mid-century (2041–2070) to the late-century 

(2071–2100) periods suggests a sustained spatial anomaly in drought occurrence relative to 

surrounding areas. In certain areas, such as the northeastern and western zones, hotspots expand and 

intensify. In others, particularly parts of the Lake Victoria basin and eastern Uganda, they shrink or 

shift, suggesting evolving drought regimes. 

The alignment of these statistically significant clusters with key agricultural and pastoral 

landscapes indicates that drought risks in these regions are likely to remain recurrent under future 

climatic conditions. This necessitates targeted adaptation strategies focused on water resource 

management, livestock systems, and agricultural resilience. 
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Fig. 10. Projected drought hotspot clusters (Getis-Ord Gi*, p < 0.05) for mid-century (2041–2070, top row) 

and late-century (2071–2100, bottom row) under SSP1-2.6, SSP2-4.5 and SSP5-8.5. Red indicates statistically 

significant drought hotspots; blue indicate cold spots and white indicates areas with insignificant hotspots. 

 

4.7. Projected drought trends under different SSP scenarios 

Projected SPEI-03 drought trends show marked spatial variability across Uganda, with the 

direction and magnitude of change differing between the mid-century (2041–2070) and late-century 

(2071–2100) periods across all emission scenarios (Fig. 11). 

During the mid-century, drought occurrence significantly increases under SSP1-2.6, especially 

across central and northern Uganda, including areas around Lake Kyoga and the upper northern 

districts. Under SSP2-4.5, significant decreases in drought occurrence are projected across the 

central–western stretch of the country, while isolated increases persist over the Kyoga–Teso 

subregion. The high-emission SSP5-8.5 scenario, meanwhile, projects significantly decreasing 

drought trends over the Karamoja region in northeastern Uganda, suggesting localized improvement 

in short-term moisture conditions. 

By the late century, the spatial configuration of droughts changes considerably. Under SSP1-

2.6, most of the country experiences decreasing drought trends, especially across the western 

highlands, Lake Victoria basin, and northern zones. SSP2-4.5 exhibits a contrasting spatial pattern, 

with increasing drought trends concentrated in eastern Uganda, while decreasing trends dominate the 

West Nile. In contrast, the high-emission SSP5-8.5 scenario is dominated by significant increases in 

drought occurrence across southern, western, southwestern, and northern Uganda. These widespread 

positive trends indicate that droughts are projected to intensify and occur more frequently by the end 

of the century. Overall, the strongest increasing trends are projected under SSP5-8.5 during the late-

century period, underscoring heightened drought risks under high-emission pathways. 
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Fig. 11. Projected SPEI-03 trends across Uganda under SSP1-2.6, SSP2-4.5, and SSP5-8.5 for mid-

century (2041–2070) and late-century (2071–2100) periods. Stippled areas denote statistically significant 

changes (p < 0.05). 

 

5. DISCUSSION  

5.1. Spatial and temporal dynamics of drought in Uganda 

This study reveals that drought patterns in Uganda exhibit regional, scenario, and temporal 

variations. Under SSP1-2.6, drought occurrence increases during the mid-century in central and 

northern Uganda but decreases toward the late century. Under SSP2-4.5, droughts decrease in the 

central and western regions during the mid-century, then increase in eastern Uganda by the late 

century. Under SSP5-8.5, droughts decrease in Karamoja during the mid-century but become 

widespread and intense across the north, west, and south toward the late century. These shifts reflect 

the strong influence of rising temperatures and higher evapotranspiration (Ojara et al., 2024), which 

can offset rainfall gains and produce uneven drought outcomes. 

The semi-arid north remains the most sensitive region. Droughts there often last two to four 

months and occur more frequently than in other parts of the country. This supports earlier evidence 

that Karamoja and the surrounding districts face persistent agricultural and hydrological droughts 

linked to short wet seasons and delayed rainfall onset (Byakatonda et al., 2021). Central and 

northwestern Uganda also shows signs of increasing drought risk, in line with past assessments by 

Kyatengerwa et al., (2020). 

Hotspot analysis confirms that drought clusters remain strongest in the cattle corridor and extend 

from southwestern Uganda through the west and into the northeast. These are critical regions that 

support mixed farming and livestock. Mulinde et al., (2016) similarly identified the cattle corridor as 

a major climate risk zone due to its frequent dry spells and limited water storage capacity. Nalwanga 

et al., (2024) also reported that droughts in this region often persisted for several months, occasionally 

extending over multiple years under high-emission conditions. The persistence of these hotspots 

across scenarios and time periods suggests that drought risk is entrenched and unlikely to diminish. 

The Lake Victoria basin also exhibits localised hotspots in several scenarios, highlighting the 

sensitivity of this humid zone to short dry spells. 
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Across the country, drought patterns do not follow a single direction. Some regions experience 

temporary reductions in drought severity, particularly under SSP1-2.6 and mid-century SSP5-8.5, 

while others show apparent intensification. This mixed response aligns with the East African climate 

paradox, where rainfall may increase in parts of the region, but water stress still rises due to warming. 

Uganda's future drought landscape will therefore be shaped by localised hotspots rather than uniform 

drying. These areas, particularly the cattle corridor, Lake Victoria basin, and Karamoja, already 

experience livelihood stress (Nalwanga et al., 2025). Therefore, they should remain priority zones for 

targeted adaptation, improved water management, and climate-resilient livelihood strategies.  

5.2. Contributions 

High-resolution drought modelling using NEX GDDP CMIP6 downscaled to about 4 km for 

detailed national analysis. Integration of multiple drought metrics and hotspot detection to identify 

not only where droughts intensify but also where they cluster persistently in the whole country. 

Scenario-based insights that show how drought patterns may diverge under low and high 

emissions, providing valuable input for policy and planning. Clear linkage between mapped hotspots 

and key livelihood zones that need targeted adaptation. 

5.3. Limitations and future work 

The analysis used a single GCM (CanESM5) from NEX-GDDP-CMIP6, which does not capture 

inter-model variability and uncertainty. Although the spatial resolution was improved through 

downscaling, localised microclimatic variations, especially in complex terrains such as highlands, 

may not be fully resolved. Future work should utilise multi-model ensembles and incorporate soil 

moisture, runoff, and vegetation indices to deepen the understanding. Linking drought metrics to crop 

yield, livestock loss, and water supply impacts would strengthen the practical value of the results. 

Including socioeconomic exposure and vulnerability data would also improve national drought risk 

assessments. 

 

6. CONCLUSIONS 

This study provides a national-scale assessment of historical and future droughts in Uganda using 

bias-adjusted CanESM5 data and SPEI. The combination of TerraClimate observations and 

downscaled projections produced a consistent picture of drought behavior across the country. 

Historical analysis shows strong drying in the north and parts of central Uganda. Future patterns differ 

across scenarios and time periods. Under SSP1-2.6, drought conditions remain mild except for a mid-

century increase in central and northern Uganda. Under SSP2-4.5, droughts decrease in the central 

west during the mid-century but increase in eastern Uganda toward the late century. Under SSP5-8.5, 

droughts weaken in Karamoja during the mid-century but intensify across the north, west, and south 

by the end of the century. 

Hotspot analysis reveals persistent clusters along the cattle corridor, extending from the Ankole 

and Kigezi regions to the west, through to Karamoja. These clusters indicate long-term drought stress 

in areas that depend on rainfed farming and pastoralism. The duration and frequency of droughts in 

these zones point to limited recovery capacity under future warming. Uganda's drought future is 

therefore uneven, with risks concentrated in specific agroecological regions. These findings support 

the need for locally tailored adaptation strategies and improved water management. They also 

emphasize the importance of integrating fine-scale climate information with agricultural systems, 

livestock, and livelihood resilience planning. 
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