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ABSTRACT 

Thailand lies in a tropical monsoon region and is frequently affected by the decay of tropical storms 

during the rainy season, with 2–5 storms typically occurring each year. Accurate quantitative 

precipitation estimates (QPE) are therefore essential for assessing storm-related rainfall and associated 

flood risks. Radar-based rainfall estimation is particularly suitable but is prone to systematic bias 

arising from the radar reflectivity–rainfall (Z–R) relationship. This study develops a Geographic 

Information System (GIS)-based analytical approach to evaluate and compare Z–R relationships and 

to reduce bias between radar-estimated and gauge-observed rainfall. The analysis was conducted across 

lowland and mountainous areas in northern and central Thailand using data from the Phitsanulok C-

band weather radar and 89 rain gauge stations during Tropical Storm Son-Tinh (2018). This study 

integrates radar data with Geographic Information Systems (GIS) to systematically compare multiple 

Z–R relationships alongside spatial bias correction, and to evaluate differences in rainfall estimation 

accuracy between lowland and mountainous areas. Three Z–R relationships Marshall–Palmer (MP), 

Rosenfeld Tropical (RF), and Summer Deep Convection (SD) were employed to generate event-based 

radar rainfall estimates. Spatial bias correction was conducted using the Inverse Distance Weighting 

(IDW) method, and accuracy was assessed through five-fold cross-validation. The results indicate that 

uncorrected radar rainfall estimates generally underestimate actual precipitation, whereas the IDW-

based correction significantly reduces the Mean Field Bias (MFB) and improves estimation accuracy 

across diverse terrains. Among the three Z–R relationships, the Marshall–Palmer equation yielded the 

lowest errors, with a root mean square error (RMSE) of 17.517 mm and a mean absolute error (MAE) 

of 13.405 mm. The event-based spatial adjustment demonstrates that integrating an appropriate Z–R 

relationship with GIS-based bias correction substantially enhances radar QPE reliability, particularly 

in regions with complex topography. This framework offers practical value for hydrological 

applications and flood risk management in tropical monsoon regions. 
 

Keywords: Quantitative Precipitation Estimation (QPE); Bias correction; GIS-based analysis; 

Tropical Storm Son-Tinh. 

1. INTRODUCTION 

Thailand was among the countries in Southeast Asia that were impacted by Tropical Storm Son-

Tinh in July 2018.  The storm resulted in substantial damage to infrastructure and agriculture, notably 

in the northeastern and northern regions of Thailand, as well as flash floods, widespread inundation, 

and heavy rainfall (Thai Meteorological Department, 2018; National Water Resources Agency, 2018).  

The predominance of convective clouds over stratiform clouds was observed in radar-based analyses 

of storm decomposition in central Thailand, as evidenced by multi-station radar mosaics (Mahavik & 

Tantanee, 2020a).  This incident underscores the significance of accurate rainfall estimation in the 

context of disaster management and early warning systems. However, because spatial bias varies 

across different radar rainfall relationships, applying spatial bias correction may improve radar 

rainfall estimates within the water basin. Accordingly, this study investigates whether such correction 

can enhance the accuracy of radar-derived rainfall. 
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The spatial resolution and reliability of precipitation data are critical factors in the study of floods 

and rainfall.  The upper Chao Phraya basin and its tributaries Ping, Wang, Yom, and Nan are 

distinguished by their complex topography, which encompasses narrow valleys, foothills, and ridges.  

Abro et al. (2019) have demonstrated that highland regions typically receive a greater amount of 

annual rainfall than lowlands. However, satellite-based precipitation products frequently 

underestimate rainfall in these regions, particularly during severe storms with highly heterogeneous 

precipitation rates.  The sparse and uneven distribution of ground-based rain gauges results in high 

uncertainty in rainfall datasets, despite the fact that they provide precise point-scale measurements 

(Brauer et al., 2016). This is due to the fact that mountainous and remote areas are underrepresented. 

Weather radar provides spatially and temporally detailed rainfall observations that are 

appropriate for medium to small basins (Harrison et al., 2009).  Nevertheless, radar measurements are 

susceptible to a variety of sources of uncertainty, such as attenuation, anomalous propagation, ground 

clutter, calibration errors, partial beam blockage, and bright band contamination (Gourley & Calvert, 

2003; Krajewski et al., 2010; Krajewski et al.,2011; Sharif et al., 2020; Mahavik et al., 2025).  The 

quality of radar echoes is further compromised by clutter from communication towers, towering 

buildings, or mountains, resulting in the misclassification of non-precipitation signals as rainfall 

(Mahavik et al., 2025).  Nevertheless, the integration and processing of multi-station radar data have 

been demonstrated to improve rainfall monitoring in storm decay events across vast basins, despite 

these challenges (Mahavik & Tantanee, 2020; Mahavik et al., 2025). 

The relationship between radar reflectivity and rainfall rate (Z–R relationship) is a fundamental 

component of radar-based quantitative precipitation estimation (QPE), as it provides the empirical 

link between radar reflectivity (Z) and the surface rainfall rate (R). The Z–R relationship is not 

universal; rather, it varies depending on factors such as drop size distribution (DSD), storm type, and 

topographic conditions (Morin et al., 2003; Wu et al., 2018). Accurate QPE therefore requires 

selecting an appropriate Z–R relationship that best represents the rainfall characteristics of each 

region. The Marshall–Palmer (MP) (Marshall & Palmer, 1948), Rosenfeld Tropical (RF) (Rosenfeld 

et al., 1993), and Summer Deep Convection (SD) (Battan, 1973) equations are widely used examples 

that represent distinct environmental and microphysical rainfall characteristics. Specifically, the MP 

relationship is most suitable for stratiform rainfall characterized by small raindrop sizes, the RF for 

tropical convective rainfall typical of humid climates, and the SD for deep convective rainfall 

associated with intense summer thunderstorms. 

Radar-based rainfall estimates are frequently combined with rain gauge data to rectify systematic 

biases, thereby further reducing uncertainties.  Spatial interpolation and other bias correction 

techniques are employed to mitigate the discrepancy between radar areal estimates and point-scale 

gauge observations (Ahrens, 2006; Mahavik, 2017; Mapium et al., 2022).  Geographic Information 

Systems (GIS) offer robust instruments for the integration of spatial data, the management of rainfall 

fields, and the application of bias correction techniques, thereby increasing the value of radar datasets 

for hydrological and meteorological applications (Xie et al., 2005; Cho, 2020; Mahavik et al., 2021). 

Therefore, the integration of radar-based rainfall estimates with ground-based rain gauge 

measurements, which can be effectively implemented through Geographic Information Systems 

(GIS), is crucial for enhancing rainfall estimation accuracy, particularly in regions with complex 

terrain. This study systematically applies atmospheric radar data in conjunction with GIS in the central 

region of Thailand to analyze rainfall associated with Tropical Storm Son-Tinh (2018). Radar data 

were obtained from the Phitsanulok C-band radar station, while rainfall measurements were collected 

from 89 ground-based rain gauge stations. The primary objective was to evaluate the suitability of 

three Z–R relationships: Summer Deep Convection (SD), Rosenfeld Tropical (RF), and Marshall–

Palmer (MP). To address spatial bias, the Inverse Distance Weighting (IDW) method was applied, 

and the estimation accuracy was assessed using five-fold cross-validation to examine the consistency 

between radar-derived rainfall and gauge observations. Accuracy was further evaluated using two 

categories of statistical metrics: (1) error-based measures, including Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE), and (2) bias-based measures, such as Mean Field Bias (MFB). 
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2. STUDY AREA  

The ground-based weather radar at the Phitsanulok Weather Radar Station, operated by the Thai 

Meteorological Department, is located at an elevation of 47 meters above mean sea level (MSL) at 

geographic coordinates 16.775531°N, 100.217901°E, as shown in Fig. 1 The radar operates in the           

C-band frequency with an observation radius of 240 km and performs four scans per hour at elevation 

angles of 0.5°, 1.5°, 2.4°, and 3.4° (Kangerd et al., 2024; Mahavik et al., 2025). The area covered by 

the weather radar encompasses diverse topography, ranging from flood-prone lowland plains in the 

central and southern regions to mountainous terrain distributed along the western, northern, and 

eastern edges of the radar detection range. This region also includes key river basins within the Chao 

Phraya watershed, such as the Ping, Wang, Yom, and Nan rivers. In mid-July, the study area 

experienced intense rainfall and flooding associated with Tropical Storm Son-Tinh, which moved 

from Vietnam into the upper northeastern region of Thailand, coinciding with a strong southwest 

monsoon. The combination of the storm and monsoon resulted in prolonged heavy rainfall, 

particularly over the upper northern and northeastern regions. Consequently, this event was selected 

as a case study within a 120-kilometer radar observation radius. 

 

Fig. 1. Study area: (a) the national boundary of Thailand; (b) the observational domain of the Phitsanulok weather 

radar within the Chao Phraya Basin. The red triangle denotes the location of the radar station. The blue dashed 

circle represents the radar’s observation coverage with a radius of 120 kilometers. Blue squares with black 

outlines indicate the locations of ground-based rain gauge stations used as the testing dataset, while black circles 

with white outlines represent the validation dataset. In total, 89 rain gauge stations were employed in this study. 

3. DATA AND METHODS 

3.1. Radar Data Observed by Ground-Based Radar Station 

In order to minimize uncertainty and more accurately represent near-surface rainfall, radar data 

at the lowest available elevation angles were chosen for this investigation, as per the methodology of 

Kangerd et al. (2024).  To analyze the rainfall associated with Tropical Storm Son-Tinh over a nine-

day period (15–23 July 2018), a Constant Altitude Plan Position Indicator (CAPPI) was generated at 

2 km above mean sea level.  The Thai Meteorological Department (TMD) operates the Phitsanulok 

Weather Radar Station in Thailand (16.775531°N, 100.217901°E; 47 m a.s.l.), from which the data 
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were obtained.  This C-band dual-polarization radar has a 240 km observation radius, which allows it 

to cover lower northern and central Thailand. It conducts scans every 15 minutes (four times per hour) 

at elevation angles of 0.5°, 1.5°, 2.4°, and 3.4° (Mahavik et al., 2025).  Only daily accumulated rainfall 

files with a scan availability of at least 80% (≥19 hours of data per day) were retained for quality 

control.  All 825 radar files that met these criteria have been used in the analysis. 

3.2. Rain gauge rainfall data 

Within a 120 km radar observation radius, rainfall data and station locations were obtained from 

the Automatic Telemetry Stations of the Water Resources Information Institute (Public Organization; 

WRI).  It is imperative to resolve radar limitations, including signal attenuation with distance and 

beam broadening, which can result in a discrepancy between radar reflectivity and actual ground 

rainfall (Mahavik et al., 2024). These stations are thus crucial. The WRI API was used to access the 

data in CSV format (https://tiservice.hii.or.th/opendata/data_catalog/hourly_rain/0all_stn_meta data. 

csv) for the duration of Tropical Storm Son-Tinh, local Thailand time. After quality control and the 

removal of anomalous or lacking data, 89 stations were chosen for the study in accordance with the 

gauge-density standards of the World Meteorological Organization (2008), as shown in Fig. 1b 

Initially, 96 stations were considered.  We employed these hourly rainfall data as ground truth for the 

bias correction procedure, comparing them to radar-derived rainfall. 

3.3. Digital elevation model (DEM) 

A 30-meter spatial resolution Digital Elevation Model (DEM) from the United States Geological 

Survey (USGS) was used. The researchers developed code to classify areas based on slope values 

derived from the DEM. The slope classification was adapted from Mokarram & Hojati (2016), where 

areas with slopes ≤ 5°were defined as flat or lowland (Class 1), and those >5°as hilly or 

mountainous (Class 2), with no-data areas assigned as Class 0. The resulting raster-based 

classification (lowland vs. mountainous) was then converted into vector format for GIS-based spatial 

analysis.  

3.4. Software and Libraries 

Data analysis was conducted using Python. The open-source Py-ART library (Helmus & Collis, 

2016) was employed for processing and analyzing ground-based radar data and is fully compatible 

with other Python libraries, including NumPy, Scikit-learn, Matplotlib, CartoPy, and Xarray (Bowden 

et al., 2025; Mahavik et al., 2024, 2025). Py-ART was specifically used for filtering and removing 

signal noise (Signal-to-Noise Ratio: SNR) and for attenuation correction using dual-polarimetric 

variables, which compensates for signal weakening with distance and improves radar observations of 

convective cloud systems in the C-band radar (Gu et al., 2011), providing accurate input for rainfall 

estimation. Open-source GIS software QGIS (QGIS Development Team, 2024) was used for 

geospatial visualization of radar data, both in preliminary data preparation and spatial analysis. In this 

study, a workflow was developed in QGIS to process accumulated rainfall, facilitating efficient 

handling of both spatial and temporal data for subsequent analyses. 

 

3.5. Z-R relationships 

The Z–R relationship, which describes the correlation between radar reflectivity and rainfall rate, 

is used to estimate rainfall from radar reflectivity measurements. Radar reflectivity, representing the 

scattering of radar waves by raindrops in the atmosphere, cannot directly indicate the amount of 

rainfall reaching the ground, unlike ground-based rain gauge measurements. Therefore, radar 

reflectivity (Z), measured in dBZ, must be converted into rainfall rate (R) (Mahavik et al., 2021; 

Mapiam & Sriwongsitanon, 2008) using a power-law relationship, as expressed in Eq. (1) 

 

𝑍 = 𝑎𝑅𝑏      (1) 
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where, Z denotes the radar reflectivity factor, expressed in units of (mm6 /m−3) while R represents the rainfall 

rate, expressed in (mm/h). Constants a and b (Table 1.) are empirical coefficients that depend on the raindrop 

size distribution and may vary according to rainfall characteristics, precipitation type, and seasonal conditions. 

In Thailand, commonly adopted coefficient values have been defined for operational use. 

 

Table 1. 

Z–R relationships used for converting radar reflectivity to rainfall rate. 

Z-R relationship Equation Description 

Marshall/Palmer (MP) Z = 

200R1.6 

Represents stratiform rainfall events or small raindrop sizes 

in mid-latitudes (Marshall & Palmer, 1948). 

Rosenfeld Tropical (RF) Z = 

250R1.2 

Represents rainfall events in tropical regions (Rosenfeld et 

al., 1993). 

Summer Deep Convection 

(SD) 

Z = 

300R1.4 

Represents convective rainfall events associated with 

vertically developed clouds or intense convective storms 

during summer (Battan, 1973). 

 

3.6. Evaluation metrics 

In order to assess the performance of radar-estimated rainfall in comparison to ground-based 

measurements, three statistical metrics were used: Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE), which quantify the magnitude of differences between radar and observed 

rainfall, and Mean Field Bias (MFB), which evaluates whether radar rainfall tends to systematically 

overestimate or underestimate rainfall relative to gauge observations.  Based on Mahavik et al. (2024), 

these statistics are frequently employed to assess the discrepancies between observed and model-

derived data.  MFB is a method that is frequently employed in meteorological research to evaluate 

the accuracy and bias of radar precipitation estimates. It is specifically used to evaluate the difference 

between radar-estimated rainfall (RR) and gauged rainfall (GR). 

3.6.1. Root mean squared error: RMSE 

RMSE is a statistical measure used to quantify the magnitude of errors in estimated rainfall 

compared with ground observations. It is computed by squaring the differences between radar and 

gauge rainfall, averaging these squared differences, and then taking the square root of the mean. 

RMSE therefore reflects the average magnitude of error in quantitative terms. Because squaring 

emphasizes larger deviations, substantial errors exert greater influence on the RMSE than smaller 

ones. The RMSE is expressed as Eq. (2) 

 

RMSE = √
1

n
∑ (GRi − RRi)

2n
i=1    (2) 

3.6.2. Mean absolute error: MAE  

MAE is a statistical index used to assess the accuracy of radar-estimated rainfall by comparing it 

against ground-based observations. It is calculated as the mean of the absolute differences between 

radar estimates and gauge measurements. Unlike RMSE, MAE does not disproportionately weight 

larger errors, thereby providing a balanced representation of the average magnitude of discrepancies, 

regardless of whether they result from overestimation or underestimation. This property makes MAE 

a neutral and intuitive measure of the average difference between radar and ground rainfall. The MAE 

is expressed as Eq. (3) 

 

MAE =
1

n
∑ |GRi − RRi|

n
i=1     (3) 



191 

 

3.6.3. Mean field bias: MFB 

MFB is a fundamental technique used to adjust systematic multiplicative biases in radar-derived 

rainfall estimates. This metric is critical for improving the accuracy of rainfall estimation derived 

from radar reflectivity (Hanchoowong et al., 2012). Following Krajewski & Smith (2002), MFB is 

calculated by dividing the accumulated radar-estimated rainfall over a given period by the 

accumulated gauge-measured rainfall for the same period. An MFB value greater than 1 indicates that 

radar estimates tend to underestimate actual rainfall, while an MFB value less than 1 indicates that 

radar estimates tend to overestimate rainfall relative to ground observations. The formulation is given 

in Eq. (4) 

MFB =  
∑ GRi

n
i=1

∑ RRi
n
i=1

     (4) 

where GRᵢ represents the accumulated rainfall from a ground-based gauge at observation point i, and RRᵢ 

denotes the corresponding radar-estimated rainfall covering that point. 

 

3.7. Spatial Interpolation  

Spatial interpolation is commonly applied in meteorology to reduce biases in radar-estimated 

rainfall by integrating point-scale gauge measurements with spatially continuous radar data. In 

general, interpolation estimates rainfall values at unsampled locations using information from 

surrounding stations, thereby addressing the sparse or uneven distribution of rain gauges. Among 

deterministic approaches, which are widely used for bias correction, Inverse Distance Weighting 

(IDW) is particularly well established. IDW assumes that observations closer to the target location 

exert greater influence than those farther away, making it suitable for local rainfall adjustment (Chang 

& Kang-tsung, 2002). Previous studies have demonstrated its effectiveness: Ahrens (2006) 

highlighted its utility in producing daily rainfall maps and filling missing values in time series, while 

Chen & Liu (2012) successfully applied IDW for spatial rainfall interpolation in complex 

environments. More recently, Sokol et al. (2021) emphasized the relevance of deterministic methods 

such as IDW for radar–gauge integration. In this study, IDW was employed as a deterministic bias-

correction technique to adjust radar-estimated rainfall against gauge observations. The formulation 

used is presented in Eq. (5) and Eq. (6)  

 

𝑅̂𝑝 =  ∑ 𝑤𝑖𝑅𝑖
𝑁
𝑖=1      (5) 

𝑤𝑖 =  
𝑑𝑖

−𝛼

∑ 𝑑𝑖
−𝛼𝑁

𝑖=1

      (6) 

where 𝑅̂𝑝 is the unknown rainfall at location 𝑝 (mm), Rᵢ  is the observed rainfall at the i ground station (mm), 

N  is the number of stations used for interpolation, wᵢ is the weight assigned to station i, dᵢ is the distance from 

station i to the radar pixel, and  is the power parameter controlling the influence of distance, typically set to 2 

(Kangerd et al., 2024; Lin & Yu, 2008). 

 

3.8. K-Fold Cross-Validation 

To assess the robustness of radar rainfall adjustment against ground-based observations, a K-fold 

cross-validation framework was implemented. Cross-validation is widely used to evaluate model 

performance by partitioning the dataset into multiple folds, thereby reducing dependence on a single 

train–test split and minimizing bias. In this study, the rain gauge dataset comprising 89 stations was 

randomly divided into five folds (K = 5) using QGIS tools. For each iteration, approximately 70% of 

the stations were assigned to the calibration subset and 30% to the validation subset. This procedure 

ensured that all stations were used for both calibration and validation across different folds, providing 

a reliable measure of model stability and accuracy. 
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3.9. Radar data correction 

Removal of Clutter and Noise (Signal-to-Noise Ratio: SNR). Raw radar reflectivity data were 

preprocessed to remove contamination from non-meteorological sources, such as ground clutter, 

using the open-source Py-ART library (Helmus & Collis, 2016). SNR was calculated for each radar 

gate, and a gate filter was applied to exclude values below 1 dBZ or above 70 dBZ. These thresholds 

were selected to eliminate anomalous signals typically associated with clutter or spurious atmospheric 

variability. The Top of Atmosphere (TOA) parameter was set to 15,000 m to further suppress non-

meteorological echoes. 

Because C-band radar is highly sensitive to signal attenuation, which increases with both 

propagation distance and rainfall intensity, and because the study area contains mountain ranges that 

cause partial and complete beam blockage, resulting in reduced returned reflectivity (Mahavik & 

Tantanee, 2020b), an attenuation correction was also applied to the reflectivity field (Gu et al., 2011). 

After correction, the data were considered most reliable within a 120 km range, where radar estimates 

exhibited the highest consistency with ground-based rainfall observations (Mahavik et al., 2025). The 

establishment of the 120 km radar coverage boundary is based on the technical limitations of the C-

band radar system and the degradation of reflectivity signal quality with increasing distance, primarily 

due to noise contamination and attenuation effects. As the radar beam propagates farther from the 

radar site, beam broadening and loss of spatial resolution become significant, leading to reduced radar 

performance and decreased accuracy in quantitative precipitation estimation (QPE), consistent with 

the findings of Mahavik et al. (2025).  together, these preprocessing steps clutter, and noise filtering, 

TOA adjustment, and attenuation correction were essential to ensure that the reflectivity inputs used 

in Z–R rainfall estimation were physically consistent and of high quality. 
 

3.10. Workflow of data analysis 

The data analysis framework of this study comprised four main steps: (1) data collection, (2) data 

processing, (3) development of analytical methods in GIS, and (4) data analysis (Fig. 2). 

 

 

Fig. 2. Conceptual framework of the research workflow. 
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Data Collection. Three types of data were used: radar observations, ground-based rainfall 

measurements, and topographic information. Radar data were obtained from the Phitsanulok C-band 

ground-based weather radar operated by the Thai Meteorological Department. Four elevation angles 

(0.5°, 1.5°, 2.3°, and 3.4°) were selected for the period 15–23 July 2018, covering the passage of 

Tropical Storm Son-Tinh. To ensure temporal completeness, only days with at least 80% scan 

availability (≥19 hours) (Mahavik et al., 2025) were retained, resulting in 825 UF-format files 

recorded in UTC. Rainfall data were collected from 96 automatic telemetry stations within a 120 km 

radius of the radar. After quality control and removal of abnormal stations, 89 stations were retained. 

Data were retrieved via a Python API and synchronized to local Thai time, following the approach of 

Kangerd et al. (2024) to ensure temporal consistency with radar scans. Topographic information was 

derived from a USGS Digital Elevation Model (DEM) with 30 m resolution. The DEM was used to 

classify terrain into three categories: flat (slope ≤ 5°), mountainous (slope > 5°), and no-data areas. 

Data Processing. Radar data were preprocessed using Python and the open-source Py-ART 

library (Helmus & Collis, 2016). The procedure included ground clutter filtering, attenuation 

correction, and transformation from polar to Cartesian coordinates. Reflectivity fields were converted 

into rainfall products in Constant Altitude Plan Position Indicator (CAPPI) format at 2 km altitude, 

generated for four scans per hour (00, 15, 30, and 45 minutes). The outputs were exported as GeoTIFF 

files for further spatial analysis in QGIS. 

Development of Analytical Methods in GIS. A rainfall estimation and bias-correction model was 

implemented in GIS using the Processing Modeler. This design improved efficiency and minimized 

redundancy in data handling. Radar reflectivity (Z) was converted into rainfall rate (R) using three        

Z–R relationships: Marshall–Palmer (Marshall & Palmer, 1955), Rosenfeld Tropical (Rosenfeld et 

al., 1993), and Summer Deep Convection (Battan, 1973). Radar rainfall was aggregated into hourly, 

daily, and event-based totals, with values extracted at gauge locations (30% validation stations) for 

evaluation prior to bias correction. Model performance was assessed using five-fold cross-validation 

(K = 5), implemented in QGIS with a 70:30 calibration–validation split. Spatial bias correction was 

conducted by interpolating gauge–radar differences using Inverse Distance Weighting (IDW) with 

the search radius and the number of interpolation points set according to the software defaults. The 

Distance coefficient (P) was tested from 1 to 6 using K-fold cross-validation, and model accuracy was 

evaluated based on RMSE, MAE, and correlation. It was found that P = 2 produced the optimal results 

after bias correction. (Kangerd et al., 2024) Corrected rainfall fields were subsequently re-extracted 

at validation stations for post-correction analysis. 

Data Analysis. Spatial error patterns were analyzed in QGIS by comparing radar–gauge 

discrepancies across DEM-derived terrain classes. Accuracy was assessed using error metrics RMSE 

and MAE as well as bias metrics including MFB. These analyses provided a systematic evaluation of 

radar rainfall estimates before and after bias correction. Kangerd et al. (2024). 

4. RESULTS AND DISCUSSIONS 

4.1. Radar data correction process 

The preprocessing workflow that was performed to the radar reflectivity data is shown in Fig. 3 

In Fig. 3a, we can see that the raw reflectivity field is heavily contaminated with ground clutter and 

non-precipitation echoes, especially in the vicinity of the radar station. To eliminate out-of-the-

ordinary signals from surface objects and atmospheric variability, a gate filter based on signal-to-

noise ratio (SNR) thresholds (1-70 dB) was implemented using the free and open-source Py-ART 

package.  With non-meteorological echoes properly suppressed, the precipitation structure is more 

clearly highlighted by the resultant filtered reflectivity (Fig. 3c). The next step was to implement 

attenuation correction in order to overcome the limitations of C-band radar.  In places with heavy 

precipitation and at larger distances from the radar, the uncorrected reflectivity underestimates the 

rainfall intensity, as demonstrated in Fig. 3d Better detection of faraway and severe rainstorms is 

made possible by the restored signals brought about by the corrected field (Fig. 3e).   
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Fig. 3. Radar clutter and attenuation correction process during Tropical Storm Son-Tinh on 17 July 2018 at 

21:00 local time (14:00 UTC). (a) Raw reflectivity, (b) Signal-to-Noise Ratio (SNR), (c) Filtered reflectivity 

using SNR-based gate filter, (d) Before attenuation correction, (e) After attenuation correction, (f) Conversion 

from polar coordinates to Cartesian grid. Reflectivity values are shown in the range of 0–60 dBZ. 

Lastly, Fig. 3f shows the results of transforming the reflectivity data from polar to Cartesian 

coordinates. This created a gridded dataset that is spatially consistent and may be used for future 

rainfall estimation and analysis using GIS. 

 

4.2. Development of the Radar Analysis Process in a GIS System 

Using the open-source GIS program QGIS, which offers efficient capabilities for processing huge 

spatial datasets, the researchers in this work computed the accumulated rainfall on an hourly basis 

using radar measurements (Kangerd et al., 2024).  Due to the complexity and lack of compatibility 

with spatial analysis in raw radar data, the reflectivity fields were converted into GIS-ready forms 

that could be used to integrate analytical models.  For the purpose of reproducibility and adaptability 

in dealing with the massive amounts of data and high temporal resolution of radar scans, open-source 

software was chosen. The approach was optimized by using a QGIS automated processing model 

(Fig. 4).   

Fig. 5 shows how this approach uses the three Z-R relationships to systematically transform raw 

reflectivity into hourly rainfall fields, which are then aggregated to create event-based rainfall 

datasets. The regional diversity induced by distinct Z-R relationships is illustrated in Fig. 5, which 

depicts the event-based accumulated rainfall during Tropical Storm Son-Tinh (15-23 July 2018).  A 

no-data zone above the radar site was created by the cone of silence, and rainfall was scattered 

throughout most of the 120 km radar sweep.  

The storm's most affected regions in the eastern and northeastern sectors also had the densest 

concentrations of heavy rainfall. The Z-R connections diverged significantly. The most intense 

rainfall was produced by the ZR-RF connection (Fig. 5b), which highlighted the presence of isolated 

convective cores.  Strong rainfall was also recorded by the ZR-SD relationship (Fig. 5c), although it 

was less concentrated than ZR-RF.  In comparison to the other two formulations, the ZR-MP 

relationship (Fig. 5a) produced a less concentrated and more evenly distributed rainfall field, which 

understated the severity of isolated extremes. 
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Fig. 4. Automated model for calculating hourly accumulated rainfall using the Marshall–Palmer                                    

Z–R relationship. 

 

Fig. 5. Illustrates the event-based accumulated rainfall maps of Tropical Storm Son-Tinh from 15–23 July 2018 

derived using different Z-R relationships: (a) ZR-MP, (b) ZR-RF, and (c) ZR-SD. 

Rainfall measurements at test rain gauge locations (Fig. 1b) were obtained using radar-derived 

rainfall maps, retaining only nonzero pairs for analysis.  This combination facilitated the computation 

of bias between radar and gauge data, subsequently spatially interpolated by the IDW method.                    

Fig. 6 provides an example of the interpolation findings for the ZR-MP connection. The bias 

distribution displays distinct spatial patterns: radar consistently overestimates rainfall in the eastern 

region of the coverage area (red shading) while underestimating rainfall in the mountainous west (blue 

shading), where topographic blockage diminishes radar signal reliability.  While Fig. 6 shows the ZR-

MP scenario, same spatial bias tendencies were noted for the ZR-RF and ZR-SD correlations. 

Following bias correction with the adjustment factors generated from the IDW, Fig. 7 shows the 

rainfall fields locations where the radar had previously overestimated rainfall now have lower values, 

and locations where it had underestimated rainfall have had their value adjusted upwards to match 

gauge observations. This is clearly visible in the revised maps. By validating the results against 

separate stations, we can see that the correction process successfully reduced systematic deviations 

and confirmed a significant decrease in MBE. Because the bias's spatial distribution doesn't change 

over time, we can infer that the inaccuracies are systematic and caused mostly by differences in station 

placement and topography. One way to improve radar rainfall estimates is to use the spatially 

averaged bias as a correction factor. However, the distribution and density of rain gauges limit the 

precision of the corrections; in areas where there are few gauges, residual errors could be left over 

since the bias estimation isn't as accurate. 
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Fig. 6. Event-based spatial interpolation of bias using the IDW method derived from the Marshall–Palmer (ZR-MP) 

relationship, based on 70% of ground rain gauge stations used as the test set through K-fold cross-validation, with panels 

representing (a) K-fold = 1, (b) K-fold = 2, (c) K-fold = 3, (d) K-fold = 4, and (e) K-fold = 5.        

 

Fig.  7.  Event-based radar rainfall maps after spatial bias correction using the IDW method, derived from the 

Marshall–Palmer (ZR-MP) relationship, with K-fold cross-validation applied, where (a) K-fold = 1,               

(b) K-fold = 2, (c) K-fold = 3, (d) K-fold = 4, and (e) K-fold = 5. 
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4.3. Spatial Bias Correction 

Five-fold cross-validation (K = 5) was used to adjust MFB using rainfall values from test rain 

gauge locations. Table 2. shows that this procedure’s estimations of Mean Rain Gauge, Mean Rain 

Radar, Bias, and MFB contain both geographical and temporal variability, and that it minimized 

dependent on a single train-test split by averaging findings across five rounds.  Different behaviors 

were displayed by the three Z-R connections. The ZR-RF equation yielded the lowest Bias (0.115 

mm), but it provided extremely high radar totals (331.333 mm compared to 37.047 mm from gauges), 

suggesting a significant overestimation that would skew estimations of cumulative rainfall.  The ZR-

SD relationship, on the other hand, reflected systematic underestimation by producing lower radar 

totals but the largest Bias (0.168 mm).  The most balanced findings were produced by the ZR-MP 

relationship, which avoided significant overestimation while still providing accurate radar rainfall of 

247.100 mm with a mild Bias of 0.150 mm.  When it came to this event, ZR-MP consistently 

performed the best. 
Table 2. 

Adjustment of Mean Field Bias using k-fold cross validation. 

k-fold cross validation 
Mean Rain gauge 

(mm) 

Mean Rain radar 

(mm) 

Bias 

(mm) 

MFB 

(mm) 

Marshall/Palmer 37.047 247.100 0.150 37.047 

Rosenfeld Tropical 37.047 321.334 0.115 37.047 

Summer Deep Convection 37.047 220.003 0.168 37.047 

 

The initial evaluation of the bias between radar-derived rainfall and gauge observations was 

conducted using the 30% validation set prior to correction. Substantial biases were observed in the 

northern and eastern sectors of the study area, particularly over mountainous terrain, as illustrated in 

Fig. 8(a–e) for the ZR-MP relationship. The largest deviations between radar and gauge values were 

observed in these regions, which were influenced by topographic factors such as anomalous 

propagation, beam obstruction, and signal attenuation. In contrast, the central lowlands exhibited 

relatively lesser biases, which is consistent with the more stable radar performance in flat terrain.  

Discrepancies were substantially reduced throughout the study area following bias correction 

(Fig. 8(f–j). The bias magnitudes in mountainous regions experienced a significant decrease, whereas 

the lowland areas exhibited only minor alterations as a result of their preexisting lower bias levels.  

The correction enhanced agreement with gauge data in all three Z–R relationships, although the 

degree of improvement differed. The residual biases of the ZR-RF and ZR-SD equations were higher 

than those of the ZR-MP equation, suggesting that the ZR-MP equation was more effective in 

reducing systematic errors. This result is in accordance with the results summarized in Table 3., which 

indicate that ZR-MP exhibited the lowest average bias across K-folds and terrain categories. 

The performance of the three Z–R equations—ZR-MP, ZR-RF, and ZR-SD—before and after 

bias correction is summarized in Table 3.  The correlation and determination coefficients (R²) for all 

three relationships were enhanced by the correction, which was implemented through IDW spatial 

interpolation with five-fold cross-validation. The most consistent results were obtained by ZR-MP, 

which also had the highest post-correction correlation (0.761) and R² (0.850) and an MBE of 0.999 

mm, indicating excellent agreement with gauge observations.  

ZR-SD, which initially exhibited the highest bias prior to correction, significantly improved 

following correction and nearly matched the performance of ZR-MP (Correlation = 0.757; R² = 0.848; 

MBE = 0.990 mm).  Conversely, ZR-RF demonstrated inferior post-correction performance, as 

evidenced by its reduced correlation (0.729) and R² (0.829), despite its negligible pre-correction bias.  

In conclusion, these findings verify that bias correction employing IDW with cross-validation 

effectively mitigates systematic errors and enhances radar rainfall accuracy.  The most balanced and 

reliable estimates were provided by ZR-MP, while ZR-SD exhibited significant post-correction 

potential. ZR-RF was less effective for this event. 
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Fig. 8. Maps illustrating the bias between radar-derived rainfall and ground-based rain gauge measurements 

before (a–e) and after correction (f–j) using the bias values from the ZR-MP relationship, with K-folds as 

follows: K-fold=1 (a, f), K-fold=2 (b, g), K-fold=3 (c, h),  K-fold=4 (d, i), and K-fold=5 (e, j). 
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Table 3. 

Results Before and After Bias Correction of Validation Stations using k-fold cross validation. 

Z-R Relationship 
Correlation (mm) R2 (mm) Mean Bias (mm) 

Before After Before After Before After 

Marshall/Palmer 0.678 0.761 0.808 0.850 0.154 0.999 

Rosenfeld Tropical 0.618 0.729 0.775 0.829 0.120 0.948 

Summer Deep Convection 0.670 0.757 0.805 0.848 0.176 0.990 

 

The error metrics (RMSE and MAE) for radar-derived rainfall that were compared to gauge 

observations before and after the application of IDW spatial bias correction are presented in                   

Table 4.  Confirming the efficacy of IDW interpolation in enhancing rainfall estimation accuracy, the 

correction significantly reduced errors across all Z–R relationships.  ZR-MP demonstrated the most 

significant improvement among the three equations, with a reduction in RMSE from 218.186 mm to 

17.517 mm and MAE from 199.004 mm to 13.405 mm. This represents the most significant error 

reduction overall. At first, ZR-RF exhibited the lowest pre-correction errors; however, its post-

correction performance was marginally inferior to that of ZR-MP. This suggests that despite a robust 

baseline, ZR-RF has limited responsiveness to spatial bias adjustment.  ZR-SD exhibited the highest 

pre-correction errors (RMSE = 309.163 mm; MAE = 265.412 mm). However, these values were 

reduced to 19.263 mm and 14.483 mm, respectively, by bias correction. Consequently, they remained 

higher than those of ZR-MP and ZR-RF.  Overall, these results indicate that IDW spatial interpolation 

effectively mitigates systematic errors in radar rainfall estimates.  Particularly, the ZR-MP equation 

demonstrated the most balanced enhancement, as it combined substantial error reductions with 

consistent agreement across terrain types. 
Table 4. 

Statistical Values Before and After Adjustment Using the IDW Spatial Interpolation Method. 

Z-R Relationship 
Before Correction After correction 

RMSE (mm) MAE (mm) RMSE (mm) MAE (mm) 

Marshall/Palmer  218.186 199.004 17.517 13.405 

Rosenfeld Tropical 309.163 265.412 19.263 14.483 

Summer Deep Convection 191.622 170.765 17.719 13.571 

4.4. Analysis of Flat and Mountainous Rainfall Considering Topography 

Utilizing a DEM-based classification, the bias correction performance was evaluated separately 

for flat and mountainous regions in order to evaluate terrain-related effects (Fig. 9). Slopes that were 

less than 5°were classified as level, while those that exceeded 5°were classified as mountainous.  

Then, statistical indicators of radar–gauge agreement were computed for each terrain zone, allowing 

for the comparison of the efficacy of corrections in contrasting topographic conditions. 

The mean radar-estimated rainfall for flat and mountainous areas is compared in Fig. 10 before 

and Fig. 11 after bias correction. The ZR-RF relationship produced the highest totals, followed by 

ZR-MP and ZR-SD, and all three Z–R relationships substantially overestimated rainfall prior to 

correction. The uncorrected radar estimates exhibit a significant degree of variability, as evidenced 

by the large error bars in both terrain types.  The mean rainfall estimates decreased consistently across 

all relationships after the IDW bias correction was implemented, with reductions of approximately 60 

mm in both flat and mountainous zones.  Reduced variability and enhanced reliability of the corrected 

radar data were also indicated by the narrowing of the error bars.  ZR-MP demonstrated the most 

statistically robust performance of the three equations, resulting in rainfall estimates that were most 

closely aligned with gauge observations and the lowest post-correction variability. 
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Fig. 9. Topographic map showing flat areas (slope ≤ 5°) and mountainous areas (slope > 5°). 

 

Fig. 10. Mean radar-estimated rainfall before spatial bias correction in flat areas and mountainous areas for                

the three Z-R relationships. 

 

Fig. 11. Mean radar-estimated rainfall after spatial bias correction in flat areas and mountainous areas for                   

the three Z-R relationships. 
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5. DISCUSSION  

 

The suitability of various Z–R relationships for radar rainfall estimation and bias adjustment 

during Tropical Storm Son-Tinh (15–23 July 2018) over the central river basin of Thailand was 

assessed in this study.  Radar data from the Phitsanulok C-band station were combined with gauge 

observations from 89 rain stations. Spatial bias correction was implemented using IDW, and accuracy 

was evaluated through five-fold cross-validation. The results emphasize the necessity of bias 

correction before the operational use of radar rainfall products, particularly in regions with complex 

terrain that encompasses both lowlands and mountainous areas. The analysis indicates that the 

selection of the Z–R relationship significantly impacts the accuracy of radar rainfall, which is in 

accordance with previous findings (Mahavik et al., 2021; 2025). ZR-MP relationship was the most 

dependable of the three equations that were tested, as evidenced by the firm agreement between post-

correction performance and gauges (r = 0.761, R² = 0.850, and MBE ≈ 0.999 mm). The RMSE and 

MAE experienced considerable reductions in error, with the former decreasing to 17.517 mm and the 

latter to 13.405 mm. These results verify that the combination of ZR-MP and IDW bias correction 

produces highly dependable rainfall fields, which is in accordance with prior research (Goudenhoofdt 

& Delobbe, 2009; Mahavik, 2017; Mahavik et al., 2024; 2025). 

 In contrast, ZR-RF and ZR-SD initially appeared to perform better in terms of numerical bias; 

however, they both significantly overestimated rainfall.  This may be indicative of the spatial and 

temporal variability of Z–R performance, which is indicative of variations in storm structure in 

relation to the conditions under which these relationships were established (Mapiam & 

Sriwongsitanon, 2008; Mahavik et al., 2011).  The results also suggest that spatial bias correction has 

a more significant impact on the ultimate accuracy than Z–R selection.  This study confirms that the 

accuracy of radar rainfall across diverse terrain is considerably enhanced by the application of spatial 

bias correction with IDW, which is supported by cross-validation.  In addition to deterministic 

correction methods, the integration of machine learning with ground-based rainfall data presents a 

promising opportunity to further mitigate spatial bias and improve quantitative precipitation estimates 

(Hassan et al., 2022; Mihulet et al., 2023; Mahavik et al., 2024; 2025). 

6. CONCLUSIONS 

Using reflectivity data from the Phitsanulok C-band radar in Thailand  and rain gauge 

observations, this investigation assessed the bias correction of event-based radar rainfall during 

Tropical Storm Son-Tinh (15–23 July 2018).  Clutter and attenuation effects were effectively 

eliminated through data preprocessing with Py-ART, and rainfall was estimated using three Z–R 

relationships.  Initially, all equations overestimated rainfall, with Rosenfeld Tropical leading to the 

largest deviations. Conversely, the Marshall–Palmer (ZR-MP) relationship provided the most 

balanced estimates. Spatial bias correction, as well as five -fold cross-validation and IDW, 

significantly enhanced radar–gauge agreement in both flat and mountainous regions.  The most 

dependable performance was obtained by ZR-MP among the tested relationships, as evidenced by 

its significantly reduced errors and closer adherence to gauge measurements.  These findings verify 

that it is imperative to incorporate a spatial bias correction and an appropriate Z–R relationship in 

order to enhance radar quantitative precipitation estimates in complex terrain.  In order to improve 

radar rainfall estimation during tropical storm events in Thailand and similar monsoon-dominated 

regions, However, this study still has limitations regarding the number of rainfall observation 

stations, which may not be sufficient, and radar data that are affected by blockage due to terrain 

characteristics, remaining a constraint within the study area. For future research, the investigators 

suggest expanding the analysis to include more advanced techniques, such as comparing the IDW 

method with other bias correction and estimation approaches, including Kriging, co -Kriging, 

Bayesian adjustment, or machine learning-based methods. These approaches could potentially 

improve quantitative rainfall estimation in both mountainous and lowland areas, thereby supporting 

more effective flood prevention planning and rainfall management. 
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