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ABSTRACT

Thailand lies in a tropical monsoon region and is frequently affected by the decay of tropical storms
during the rainy season, with 2-5 storms typically occurring each year. Accurate quantitative
precipitation estimates (QPE) are therefore essential for assessing storm-related rainfall and associated
flood risks. Radar-based rainfall estimation is particularly suitable but is prone to systematic bias
arising from the radar reflectivity—rainfall (Z-R) relationship. This study develops a Geographic
Information System (GIS)-based analytical approach to evaluate and compare Z—R relationships and
to reduce bias between radar-estimated and gauge-observed rainfall. The analysis was conducted across
lowland and mountainous areas in northern and central Thailand using data from the Phitsanulok C-
band weather radar and 89 rain gauge stations during Tropical Storm Son-Tinh (2018). This study
integrates radar data with Geographic Information Systems (GIS) to systematically compare multiple
Z-R relationships alongside spatial bias correction, and to evaluate differences in rainfall estimation
accuracy between lowland and mountainous areas. Three Z-R relationships Marshall-Palmer (MP),
Rosenfeld Tropical (RF), and Summer Deep Convection (SD) were employed to generate event-based
radar rainfall estimates. Spatial bias correction was conducted using the Inverse Distance Weighting
(IDW) method, and accuracy was assessed through five-fold cross-validation. The results indicate that
uncorrected radar rainfall estimates generally underestimate actual precipitation, whereas the IDW-
based correction significantly reduces the Mean Field Bias (MFB) and improves estimation accuracy
across diverse terrains. Among the three Z—R relationships, the Marshall-Palmer equation yielded the
lowest errors, with a root mean square error (RMSE) of 17.517 mm and a mean absolute error (MAE)
of 13.405 mm. The event-based spatial adjustment demonstrates that integrating an appropriate Z—R
relationship with GIS-based bias correction substantially enhances radar QPE reliability, particularly
in regions with complex topography. This framework offers practical value for hydrological
applications and flood risk management in tropical monsoon regions.

Keywords: Quantitative Precipitation Estimation (QPE); Bias correction; GIS-based analysis;
Tropical Storm Son-Tinh.

1. INTRODUCTION

Thailand was among the countries in Southeast Asia that were impacted by Tropical Storm Son-
Tinh in July 2018. The storm resulted in substantial damage to infrastructure and agriculture, notably
in the northeastern and northern regions of Thailand, as well as flash floods, widespread inundation,
and heavy rainfall (Thai Meteorological Department, 2018; National Water Resources Agency, 2018).
The predominance of convective clouds over stratiform clouds was observed in radar-based analyses
of storm decomposition in central Thailand, as evidenced by multi-station radar mosaics (Mahavik &
Tantanee, 2020a). This incident underscores the significance of accurate rainfall estimation in the
context of disaster management and early warning systems. However, because spatial bias varies
across different radar rainfall relationships, applying spatial bias correction may improve radar
rainfall estimates within the water basin. Accordingly, this study investigates whether such correction
can enhance the accuracy of radar-derived rainfall.
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The spatial resolution and reliability of precipitation data are critical factors in the study of floods
and rainfall. The upper Chao Phraya basin and its tributaries Ping, Wang, Yom, and Nan are
distinguished by their complex topography, which encompasses narrow valleys, foothills, and ridges.
Abro et al. (2019) have demonstrated that highland regions typically receive a greater amount of
annual rainfall than lowlands. However, satellite-based precipitation products frequently
underestimate rainfall in these regions, particularly during severe storms with highly heterogeneous
precipitation rates. The sparse and uneven distribution of ground-based rain gauges results in high
uncertainty in rainfall datasets, despite the fact that they provide precise point-scale measurements
(Brauer et al., 2016). This is due to the fact that mountainous and remote areas are underrepresented.

Weather radar provides spatially and temporally detailed rainfall observations that are
appropriate for medium to small basins (Harrison et al., 2009). Nevertheless, radar measurements are
susceptible to a variety of sources of uncertainty, such as attenuation, anomalous propagation, ground
clutter, calibration errors, partial beam blockage, and bright band contamination (Gourley & Calvert,
2003; Krajewski et al., 2010; Krajewski et al.,2011; Sharif et al., 2020; Mahavik et al., 2025). The
quality of radar echoes is further compromised by clutter from communication towers, towering
buildings, or mountains, resulting in the misclassification of non-precipitation signals as rainfall
(Mahavik et al., 2025). Nevertheless, the integration and processing of multi-station radar data have
been demonstrated to improve rainfall monitoring in storm decay events across vast basins, despite
these challenges (Mahavik & Tantanee, 2020; Mahavik et al., 2025).

The relationship between radar reflectivity and rainfall rate (Z—R relationship) is a fundamental
component of radar-based quantitative precipitation estimation (QPE), as it provides the empirical
link between radar reflectivity (Z) and the surface rainfall rate (R). The Z-R relationship is not
universal; rather, it varies depending on factors such as drop size distribution (DSD), storm type, and
topographic conditions (Morin et al., 2003; Wu et al., 2018). Accurate QPE therefore requires
selecting an appropriate Z—R relationship that best represents the rainfall characteristics of each
region. The Marshall-Palmer (MP) (Marshall & Palmer, 1948), Rosenfeld Tropical (RF) (Rosenfeld
et al., 1993), and Summer Deep Convection (SD) (Battan, 1973) equations are widely used examples
that represent distinct environmental and microphysical rainfall characteristics. Specifically, the MP
relationship is most suitable for stratiform rainfall characterized by small raindrop sizes, the RF for
tropical convective rainfall typical of humid climates, and the SD for deep convective rainfall
associated with intense summer thunderstorms.

Radar-based rainfall estimates are frequently combined with rain gauge data to rectify systematic
biases, thereby further reducing uncertainties. Spatial interpolation and other bias correction
techniques are employed to mitigate the discrepancy between radar areal estimates and point-scale
gauge observations (Ahrens, 2006; Mahavik, 2017; Mapium et al., 2022). Geographic Information
Systems (GIS) offer robust instruments for the integration of spatial data, the management of rainfall
fields, and the application of bias correction techniques, thereby increasing the value of radar datasets
for hydrological and meteorological applications (Xie et al., 2005; Cho, 2020; Mahavik et al., 2021).

Therefore, the integration of radar-based rainfall estimates with ground-based rain gauge
measurements, which can be effectively implemented through Geographic Information Systems
(GIS), is crucial for enhancing rainfall estimation accuracy, particularly in regions with complex
terrain. This study systematically applies atmospheric radar data in conjunction with GIS in the central
region of Thailand to analyze rainfall associated with Tropical Storm Son-Tinh (2018). Radar data
were obtained from the Phitsanulok C-band radar station, while rainfall measurements were collected
from 89 ground-based rain gauge stations. The primary objective was to evaluate the suitability of
three Z-R relationships: Summer Deep Convection (SD), Rosenfeld Tropical (RF), and Marshall—-
Palmer (MP). To address spatial bias, the Inverse Distance Weighting (IDW) method was applied,
and the estimation accuracy was assessed using five-fold cross-validation to examine the consistency
between radar-derived rainfall and gauge observations. Accuracy was further evaluated using two
categories of statistical metrics: (1) error-based measures, including Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE), and (2) bias-based measures, such as Mean Field Bias (MFB).
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2. STUDY AREA

The ground-based weather radar at the Phitsanulok Weather Radar Station, operated by the Thai
Meteorological Department, is located at an elevation of 47 meters above mean sea level (MSL) at
geographic coordinates 16.775531°N, 100.217901°E, as shown in Fig. 1 The radar operates in the
C-band frequency with an observation radius of 240 km and performs four scans per hour at elevation
angles of 0.5°, 1.5°, 2.4°, and 3.4° (Kangerd et al., 2024; Mahavik et al., 2025). The area covered by
the weather radar encompasses diverse topography, ranging from flood-prone lowland plains in the
central and southern regions to mountainous terrain distributed along the western, northern, and
eastern edges of the radar detection range. This region also includes key river basins within the Chao
Phraya watershed, such as the Ping, Wang, Yom, and Nan rivers. In mid-July, the study area
experienced intense rainfall and flooding associated with Tropical Storm Son-Tinh, which moved
from Vietnam into the upper northeastern region of Thailand, coinciding with a strong southwest
monsoon. The combination of the storm and monsoon resulted in prolonged heavy rainfall,
particularly over the upper northern and northeastern regions. Consequently, this event was selected
as a case study within a 120-kilometer radar observation radius.

96°00"E

(a)

100°0'0°E 104°00°E

N00.02

20°0'0'N

16°00'N
N.0.0.94

12°00°N

N.0.0:ZL

., Legend

N
A R3rstaton
N
@ Rein (\Ib‘{ge (Test)
*  Rain Gauﬁs,(‘vmam

271 Radus 120k,

z P \ ®
s ___| Radius 240km %, 3
S \ 3
o [ Main Basin ; z e
[ Thailand RY P - 2,565
i N v
Elevation (m above mean sea level) | [\ . . { ;
\ 00" 200"
1 4 o 2,565 | 100°00°E 101°00"E
0 50 50 Km ¢ - <
—— | Malaysia
96°00"E 100°0'0°E 104°00°E

Fig. 1. Study area: (a) the national boundary of Thailand; (b) the observational domain of the Phitsanulok weather
radar within the Chao Phraya Basin. The red triangle denotes the location of the radar station. The blue dashed
circle represents the radar’s observation coverage with a radius of 120 kilometers. Blue squares with black
outlines indicate the locations of ground-based rain gauge stations used as the testing dataset, while black circles
with white outlines represent the validation dataset. In total, 89 rain gauge stations were employed in this study.

3. DATA AND METHODS
3.1. Radar Data Observed by Ground-Based Radar Station

In order to minimize uncertainty and more accurately represent near-surface rainfall, radar data
at the lowest available elevation angles were chosen for this investigation, as per the methodology of
Kangerd et al. (2024). To analyze the rainfall associated with Tropical Storm Son-Tinh over a nine-
day period (15-23 July 2018), a Constant Altitude Plan Position Indicator (CAPPI) was generated at
2 km above mean sea level. The Thai Meteorological Department (TMD) operates the Phitsanulok
Weather Radar Station in Thailand (16.775531°N, 100.217901°E; 47 m a.s.l.), from which the data
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were obtained. This C-band dual-polarization radar has a 240 km observation radius, which allows it
to cover lower northern and central Thailand. It conducts scans every 15 minutes (four times per hour)
at elevation angles of 0.5°, 1.5°,2.4°, and 3.4° (Mahavik et al., 2025). Only daily accumulated rainfall
files with a scan availability of at least 80% (=19 hours of data per day) were retained for quality
control. All 825 radar files that met these criteria have been used in the analysis.

3.2. Rain gauge rainfall data

Within a 120 km radar observation radius, rainfall data and station locations were obtained from
the Automatic Telemetry Stations of the Water Resources Information Institute (Public Organization;
WRI). It is imperative to resolve radar limitations, including signal attenuation with distance and
beam broadening, which can result in a discrepancy between radar reflectivity and actual ground
rainfall (Mahavik et al., 2024). These stations are thus crucial. The WRI API was used to access the
data in CSV format (https://tiservice.hii.or.th/opendata/data_catalog/hourly rain/Oall stn_meta data.
csv) for the duration of Tropical Storm Son-Tinh, local Thailand time. After quality control and the
removal of anomalous or lacking data, 89 stations were chosen for the study in accordance with the
gauge-density standards of the World Meteorological Organization (2008), as shown in Fig. 1b
Initially, 96 stations were considered. We employed these hourly rainfall data as ground truth for the
bias correction procedure, comparing them to radar-derived rainfall.

3.3. Digital elevation model (DEM)

A 30-meter spatial resolution Digital Elevation Model (DEM) from the United States Geological
Survey (USGS) was used. The researchers developed code to classify areas based on slope values
derived from the DEM. The slope classification was adapted from Mokarram & Hojati (2016), where
areas with slopes < 5° were defined as flat or lowland (Class 1), and those >5° as hilly or
mountainous (Class 2), with no-data areas assigned as Class 0. The resulting raster-based
classification (lowland vs. mountainous) was then converted into vector format for GIS-based spatial
analysis.

3.4. Software and Libraries

Data analysis was conducted using Python. The open-source Py-ART library (Helmus & Collis,
2016) was employed for processing and analyzing ground-based radar data and is fully compatible
with other Python libraries, including NumPy, Scikit-learn, Matplotlib, CartoPy, and Xarray (Bowden
et al., 2025; Mahavik et al., 2024, 2025). Py-ART was specifically used for filtering and removing
signal noise (Signal-to-Noise Ratio: SNR) and for attenuation correction using dual-polarimetric
variables, which compensates for signal weakening with distance and improves radar observations of
convective cloud systems in the C-band radar (Gu et al., 2011), providing accurate input for rainfall
estimation. Open-source GIS software QGIS (QGIS Development Team, 2024) was used for
geospatial visualization of radar data, both in preliminary data preparation and spatial analysis. In this
study, a workflow was developed in QGIS to process accumulated rainfall, facilitating efficient
handling of both spatial and temporal data for subsequent analyses.

3.5. Z-R relationships

The Z—R relationship, which describes the correlation between radar reflectivity and rainfall rate,
is used to estimate rainfall from radar reflectivity measurements. Radar reflectivity, representing the
scattering of radar waves by raindrops in the atmosphere, cannot directly indicate the amount of
rainfall reaching the ground, unlike ground-based rain gauge measurements. Therefore, radar
reflectivity (Z), measured in dBZ, must be converted into rainfall rate (R) (Mahavik et al., 2021;
Mapiam & Sriwongsitanon, 2008) using a power-law relationship, as expressed in Eq. (1)

Z = aRP (1)
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where, Z denotes the radar reflectivity factor, expressed in units of (mm6 /m~3) while R represents the rainfall
rate, expressed in (mm/h). Constants a and b (Table 1.) are empirical coefficients that depend on the raindrop
size distribution and may vary according to rainfall characteristics, precipitation type, and seasonal conditions.
In Thailand, commonly adopted coefficient values have been defined for operational use.

Table 1.
Z-R relationships used for converting radar reflectivity to rainfall rate.
Z-R relationship Equation Description
Marshall/Palmer (MP) Z = | Represents stratiform rainfall events or small raindrop sizes

200R!® in mid-latitudes (Marshall & Palmer, 1948).
Rosenfeld Tropical (RF) Z Represents rainfall events in tropical regions (Rosenfeld et
250R!? al., 1993).

Summer Deep Convection | Z Represents convective rainfall events associated with
(SD) 300R'4 vertically developed clouds or intense convective storms
during summer (Battan, 1973).

3.6. Evaluation metrics

In order to assess the performance of radar-estimated rainfall in comparison to ground-based
measurements, three statistical metrics were used: Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), which quantify the magnitude of differences between radar and observed
rainfall, and Mean Field Bias (MFB), which evaluates whether radar rainfall tends to systematically
overestimate or underestimate rainfall relative to gauge observations. Based on Mahavik et al. (2024),
these statistics are frequently employed to assess the discrepancies between observed and model-
derived data. MFB is a method that is frequently employed in meteorological research to evaluate
the accuracy and bias of radar precipitation estimates. It is specifically used to evaluate the difference
between radar-estimated rainfall (RR) and gauged rainfall (GR).

3.6.1. Root mean squared error: RMSE

RMSE is a statistical measure used to quantify the magnitude of errors in estimated rainfall
compared with ground observations. It is computed by squaring the differences between radar and
gauge rainfall, averaging these squared differences, and then taking the square root of the mean.
RMSE therefore reflects the average magnitude of error in quantitative terms. Because squaring
emphasizes larger deviations, substantial errors exert greater influence on the RMSE than smaller
ones. The RMSE is expressed as Eq. (2)

RMSE = \EZ?ﬂ(GRi — RR))? @)
3.6.2. Mean absolute error: MAE

MAE is a statistical index used to assess the accuracy of radar-estimated rainfall by comparing it
against ground-based observations. It is calculated as the mean of the absolute differences between
radar estimates and gauge measurements. Unlike RMSE, MAE does not disproportionately weight
larger errors, thereby providing a balanced representation of the average magnitude of discrepancies,
regardless of whether they result from overestimation or underestimation. This property makes MAE
a neutral and intuitive measure of the average difference between radar and ground rainfall. The MAE
is expressed as Eq. (3)

1
MAE = - YL 1|GR; — RR;] 3)
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3.6.3. Mean field bias: MFB

MFB is a fundamental technique used to adjust systematic multiplicative biases in radar-derived
rainfall estimates. This metric is critical for improving the accuracy of rainfall estimation derived
from radar reflectivity (Hanchoowong et al., 2012). Following Krajewski & Smith (2002), MFB is
calculated by dividing the accumulated radar-estimated rainfall over a given period by the
accumulated gauge-measured rainfall for the same period. An MFB value greater than 1 indicates that
radar estimates tend to underestimate actual rainfall, while an MFB value less than 1 indicates that
radar estimates tend to overestimate rainfall relative to ground observations. The formulation is given
in Eq. (4)

Z?:l GR]

MFB = T RR,

“4)
where GR; represents the accumulated rainfall from a ground-based gauge at observation point i, and RR;
denotes the corresponding radar-estimated rainfall covering that point.

3.7. Spatial Interpolation

Spatial interpolation is commonly applied in meteorology to reduce biases in radar-estimated
rainfall by integrating point-scale gauge measurements with spatially continuous radar data. In
general, interpolation estimates rainfall values at unsampled locations using information from
surrounding stations, thereby addressing the sparse or uneven distribution of rain gauges. Among
deterministic approaches, which are widely used for bias correction, Inverse Distance Weighting
(IDW) is particularly well established. IDW assumes that observations closer to the target location
exert greater influence than those farther away, making it suitable for local rainfall adjustment (Chang
& Kang-tsung, 2002). Previous studies have demonstrated its effectiveness: Ahrens (2006)
highlighted its utility in producing daily rainfall maps and filling missing values in time series, while
Chen & Liu (2012) successfully applied IDW for spatial rainfall interpolation in complex
environments. More recently, Sokol et al. (2021) emphasized the relevance of deterministic methods
such as IDW for radar—gauge integration. In this study, IDW was employed as a deterministic bias-
correction technique to adjust radar-estimated rainfall against gauge observations. The formulation
used is presented in Eq. (5) and Eq. (6)

RAp = Z]iv=1 WiR; (5)
a;*

W; = —v+—3 6

L ?L1 di a ( )

where ﬁp is the unknown rainfall at location p (mm), R; is the observed rainfall at the i ground station (mm),
N is the number of stations used for interpolation, w; is the weight assigned to station i, d; is the distance from

station i to the radar pixel, and o is the power parameter controlling the influence of distance, typically set to 2
(Kangerd et al., 2024; Lin & Yu, 2008).

3.8. K-Fold Cross-Validation

To assess the robustness of radar rainfall adjustment against ground-based observations, a K-fold
cross-validation framework was implemented. Cross-validation is widely used to evaluate model
performance by partitioning the dataset into multiple folds, thereby reducing dependence on a single
train—test split and minimizing bias. In this study, the rain gauge dataset comprising 89 stations was
randomly divided into five folds (K = 5) using QGIS tools. For each iteration, approximately 70% of
the stations were assigned to the calibration subset and 30% to the validation subset. This procedure
ensured that all stations were used for both calibration and validation across different folds, providing
a reliable measure of model stability and accuracy.
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3.9. Radar data correction

Removal of Clutter and Noise (Signal-to-Noise Ratio: SNR). Raw radar reflectivity data were
preprocessed to remove contamination from non-meteorological sources, such as ground clutter,
using the open-source Py-ART library (Helmus & Collis, 2016). SNR was calculated for each radar
gate, and a gate filter was applied to exclude values below 1 dBZ or above 70 dBZ. These thresholds
were selected to eliminate anomalous signals typically associated with clutter or spurious atmospheric
variability. The Top of Atmosphere (TOA) parameter was set to 15,000 m to further suppress non-
meteorological echoes.

Because C-band radar is highly sensitive to signal attenuation, which increases with both
propagation distance and rainfall intensity, and because the study area contains mountain ranges that
cause partial and complete beam blockage, resulting in reduced returned reflectivity (Mahavik &
Tantanee, 2020b), an attenuation correction was also applied to the reflectivity field (Gu et al., 2011).
After correction, the data were considered most reliable within a 120 km range, where radar estimates
exhibited the highest consistency with ground-based rainfall observations (Mahavik et al., 2025). The
establishment of the 120 km radar coverage boundary is based on the technical limitations of the C-
band radar system and the degradation of reflectivity signal quality with increasing distance, primarily
due to noise contamination and attenuation effects. As the radar beam propagates farther from the
radar site, beam broadening and loss of spatial resolution become significant, leading to reduced radar
performance and decreased accuracy in quantitative precipitation estimation (QPE), consistent with
the findings of Mahavik et al. (2025). together, these preprocessing steps clutter, and noise filtering,
TOA adjustment, and attenuation correction were essential to ensure that the reflectivity inputs used
in Z-R rainfall estimation were physically consistent and of high quality.

3.10. Workflow of data analysis

The data analysis framework of this study comprised four main steps: (1) data collection, (2) data
processing, (3) development of analytical methods in GIS, and (4) data analysis (Fig. 2).

Data Collection

= Radar data
= Rainfall at gauges
= Digital elevation model

$

Data Processing in Python N
= Signal-to-Noise ratio to remove clutter /Attenuation
= Cartesian map as CAPPI height 2 kilometers
= Terrain classification using a Digital Elevation Model )
] . N
Development of Analytical Methods in GIS
= Calculate rainfall accumulated with Z-R relationship
= Spatial interpolation of Bias values
= Adjustment of Radar Rainfall using Interpolation Y,
Data analysis )
= Rainfall analysis based on terrain classification from DEM
= Comparison of statistical methods

/

Fig. 2. Conceptual framework of the research workflow.
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Data Collection. Three types of data were used: radar observations, ground-based rainfall
measurements, and topographic information. Radar data were obtained from the Phitsanulok C-band
ground-based weather radar operated by the Thai Meteorological Department. Four elevation angles
(0.5°, 1.5°, 2.3°, and 3.4°) were selected for the period 15-23 July 2018, covering the passage of
Tropical Storm Son-Tinh. To ensure temporal completeness, only days with at least 80% scan
availability (=19 hours) (Mahavik et al., 2025) were retained, resulting in 825 UF-format files
recorded in UTC. Rainfall data were collected from 96 automatic telemetry stations within a 120 km
radius of the radar. After quality control and removal of abnormal stations, 89 stations were retained.
Data were retrieved via a Python API and synchronized to local Thai time, following the approach of
Kangerd et al. (2024) to ensure temporal consistency with radar scans. Topographic information was
derived from a USGS Digital Elevation Model (DEM) with 30 m resolution. The DEM was used to
classify terrain into three categories: flat (slope < 5°), mountainous (slope > 5°), and no-data areas.

Data Processing. Radar data were preprocessed using Python and the open-source Py-ART
library (Helmus & Collis, 2016). The procedure included ground clutter filtering, attenuation
correction, and transformation from polar to Cartesian coordinates. Reflectivity fields were converted
into rainfall products in Constant Altitude Plan Position Indicator (CAPPI) format at 2 km altitude,
generated for four scans per hour (00, 15, 30, and 45 minutes). The outputs were exported as GeoTIFF
files for further spatial analysis in QGIS.

Development of Analytical Methods in GIS. A rainfall estimation and bias-correction model was
implemented in GIS using the Processing Modeler. This design improved efficiency and minimized
redundancy in data handling. Radar reflectivity (Z) was converted into rainfall rate (R) using three
Z-R relationships: Marshall-Palmer (Marshall & Palmer, 1955), Rosenfeld Tropical (Rosenfeld et
al., 1993), and Summer Deep Convection (Battan, 1973). Radar rainfall was aggregated into hourly,
daily, and event-based totals, with values extracted at gauge locations (30% validation stations) for
evaluation prior to bias correction. Model performance was assessed using five-fold cross-validation
(K =5), implemented in QGIS with a 70:30 calibration—validation split. Spatial bias correction was
conducted by interpolating gauge-radar differences using Inverse Distance Weighting (IDW) with
the search radius and the number of interpolation points set according to the software defaults. The
Distance coefficient (P) was tested from 1 to 6 using K-fold cross-validation, and model accuracy was
evaluated based on RMSE, MAE, and correlation. It was found that P = 2 produced the optimal results
after bias correction. (Kangerd et al., 2024) Corrected rainfall fields were subsequently re-extracted
at validation stations for post-correction analysis.

Data Analysis. Spatial error patterns were analyzed in QGIS by comparing radar—gauge
discrepancies across DEM-derived terrain classes. Accuracy was assessed using error metrics RMSE
and MAE as well as bias metrics including MFB. These analyses provided a systematic evaluation of
radar rainfall estimates before and after bias correction. Kangerd et al. (2024).

4. RESULTS AND DISCUSSIONS
4.1. Radar data correction process

The preprocessing workflow that was performed to the radar reflectivity data is shown in Fig. 3
In Fig. 3a, we can see that the raw reflectivity field is heavily contaminated with ground clutter and
non-precipitation echoes, especially in the vicinity of the radar station. To eliminate out-of-the-
ordinary signals from surface objects and atmospheric variability, a gate filter based on signal-to-
noise ratio (SNR) thresholds (1-70 dB) was implemented using the free and open-source Py-ART
package. With non-meteorological echoes properly suppressed, the precipitation structure is more
clearly highlighted by the resultant filtered reflectivity (Fig. 3c). The next step was to implement
attenuation correction in order to overcome the limitations of C-band radar. In places with heavy
precipitation and at larger distances from the radar, the uncorrected reflectivity underestimates the
rainfall intensity, as demonstrated in Fig. 3d Better detection of faraway and severe rainstorms is
made possible by the restored signals brought about by the corrected field (Fig. 3e).
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Fig. 3. Radar clutter and attenuation correction process during Tropical Storm Son-Tinh on 17 July 2018 at
21:00 local time (14:00 UTC). (a) Raw reflectivity, (b) Signal-to-Noise Ratio (SNR), (¢) Filtered reflectivity
using SNR-based gate filter, (d) Before attenuation correction, (e) After attenuation correction, (f) Conversion
from polar coordinates to Cartesian grid. Reflectivity values are shown in the range of 0-60 dBZ.

Lastly, Fig. 3f shows the results of transforming the reflectivity data from polar to Cartesian
coordinates. This created a gridded dataset that is spatially consistent and may be used for future
rainfall estimation and analysis using GIS.

4.2. Development of the Radar Analysis Process in a GIS System

Using the open-source GIS program QGIS, which offers efficient capabilities for processing huge
spatial datasets, the researchers in this work computed the accumulated rainfall on an hourly basis
using radar measurements (Kangerd et al., 2024). Due to the complexity and lack of compatibility
with spatial analysis in raw radar data, the reflectivity fields were converted into GIS-ready forms
that could be used to integrate analytical models. For the purpose of reproducibility and adaptability
in dealing with the massive amounts of data and high temporal resolution of radar scans, open-source
software was chosen. The approach was optimized by using a QGIS automated processing model
(Fig. 4).

Fig. 5 shows how this approach uses the three Z-R relationships to systematically transform raw
reflectivity into hourly rainfall fields, which are then aggregated to create event-based rainfall
datasets. The regional diversity induced by distinct Z-R relationships is illustrated in Fig. 5, which
depicts the event-based accumulated rainfall during Tropical Storm Son-Tinh (15-23 July 2018). A
no-data zone above the radar site was created by the cone of silence, and rainfall was scattered
throughout most of the 120 km radar sweep.

The storm's most affected regions in the eastern and northeastern sectors also had the densest
concentrations of heavy rainfall. The Z-R connections diverged significantly. The most intense
rainfall was produced by the ZR-RF connection (Fig. 5b), which highlighted the presence of isolated
convective cores. Strong rainfall was also recorded by the ZR-SD relationship (Fig. Sc¢), although it
was less concentrated than ZR-RF. In comparison to the other two formulations, the ZR-MP
relationship (Fig. 5a) produced a less concentrated and more evenly distributed rainfall field, which
understated the severity of isolated extremes.
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Fig. 5. Illustrates the event-based accumulated rainfall maps of Tropical Storm Son-Tinh from 15-23 July 2018
derived using different Z-R relationships: (a) ZR-MP, (b) ZR-RF, and (c) ZR-SD.

Rainfall measurements at test rain gauge locations (Fig. 1b) were obtained using radar-derived
rainfall maps, retaining only nonzero pairs for analysis. This combination facilitated the computation
of bias between radar and gauge data, subsequently spatially interpolated by the IDW method.
Fig. 6 provides an example of the interpolation findings for the ZR-MP connection. The bias
distribution displays distinct spatial patterns: radar consistently overestimates rainfall in the eastern
region of the coverage area (red shading) while underestimating rainfall in the mountainous west (blue
shading), where topographic blockage diminishes radar signal reliability. While Fig. 6 shows the ZR-
MP scenario, same spatial bias tendencies were noted for the ZR-RF and ZR-SD correlations.

Following bias correction with the adjustment factors generated from the IDW, Fig. 7 shows the
rainfall fields locations where the radar had previously overestimated rainfall now have lower values,
and locations where it had underestimated rainfall have had their value adjusted upwards to match
gauge observations. This is clearly visible in the revised maps. By validating the results against
separate stations, we can see that the correction process successfully reduced systematic deviations
and confirmed a significant decrease in MBE. Because the bias's spatial distribution doesn't change
over time, we can infer that the inaccuracies are systematic and caused mostly by differences in station
placement and topography. One way to improve radar rainfall estimates is to use the spatially
averaged bias as a correction factor. However, the distribution and density of rain gauges limit the
precision of the corrections; in areas where there are few gauges, residual errors could be left over
since the bias estimation isn't as accurate.
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4.3. Spatial Bias Correction

Five-fold cross-validation (K = 5) was used to adjust MFB using rainfall values from test rain
gauge locations. Table 2. shows that this procedure’s estimations of Mean Rain Gauge, Mean Rain
Radar, Bias, and MFB contain both geographical and temporal variability, and that it minimized
dependent on a single train-test split by averaging findings across five rounds. Different behaviors
were displayed by the three Z-R connections. The ZR-RF equation yielded the lowest Bias (0.115
mm), but it provided extremely high radar totals (331.333 mm compared to 37.047 mm from gauges),
suggesting a significant overestimation that would skew estimations of cumulative rainfall. The ZR-
SD relationship, on the other hand, reflected systematic underestimation by producing lower radar
totals but the largest Bias (0.168 mm). The most balanced findings were produced by the ZR-MP
relationship, which avoided significant overestimation while still providing accurate radar rainfall of
247.100 mm with a mild Bias of 0.150 mm. When it came to this event, ZR-MP consistently
performed the best.

Table 2.
Adjustment of Mean Field Bias using k-fold cross validation.
Kk-fold cross validation Mean Rain gauge Mean Rain radar Bias MFB
(mm) (mm) (mm) (mm)
Marshall/Palmer 37.047 247.100 0.150 37.047
Rosenfeld Tropical 37.047 321.334 0.115 37.047
Summer Deep Convection 37.047 220.003 0.168 37.047

The initial evaluation of the bias between radar-derived rainfall and gauge observations was
conducted using the 30% validation set prior to correction. Substantial biases were observed in the
northern and eastern sectors of the study area, particularly over mountainous terrain, as illustrated in
Fig. 8(a—e) for the ZR-MP relationship. The largest deviations between radar and gauge values were
observed in these regions, which were influenced by topographic factors such as anomalous
propagation, beam obstruction, and signal attenuation. In contrast, the central lowlands exhibited
relatively lesser biases, which is consistent with the more stable radar performance in flat terrain.

Discrepancies were substantially reduced throughout the study area following bias correction
(Fig. 8(f—j). The bias magnitudes in mountainous regions experienced a significant decrease, whereas
the lowland areas exhibited only minor alterations as a result of their preexisting lower bias levels.
The correction enhanced agreement with gauge data in all three Z-R relationships, although the
degree of improvement differed. The residual biases of the ZR-RF and ZR-SD equations were higher
than those of the ZR-MP equation, suggesting that the ZR-MP equation was more effective in
reducing systematic errors. This result is in accordance with the results summarized in Table 3., which
indicate that ZR-MP exhibited the lowest average bias across K-folds and terrain categories.

The performance of the three Z-R equations—ZR-MP, ZR-RF, and ZR-SD—before and after
bias correction is summarized in Table 3. The correlation and determination coefficients (R?) for all
three relationships were enhanced by the correction, which was implemented through IDW spatial
interpolation with five-fold cross-validation. The most consistent results were obtained by ZR-MP,
which also had the highest post-correction correlation (0.761) and R? (0.850) and an MBE of 0.999
mm, indicating excellent agreement with gauge observations.

ZR-SD, which initially exhibited the highest bias prior to correction, significantly improved
following correction and nearly matched the performance of ZR-MP (Correlation =0.757; R* = 0.848;
MBE = 0.990 mm). Conversely, ZR-RF demonstrated inferior post-correction performance, as
evidenced by its reduced correlation (0.729) and R? (0.829), despite its negligible pre-correction bias.
In conclusion, these findings verify that bias correction employing IDW with cross-validation
effectively mitigates systematic errors and enhances radar rainfall accuracy. The most balanced and
reliable estimates were provided by ZR-MP, while ZR-SD exhibited significant post-correction
potential. ZR-RF was less effective for this event.



Apichaya KANGERD and Nattapon MAHAVIK / GIS-BASED SPATIAL BIAS ADJUSTMENT OF ... 198

10000 10100

10100

10000°E

101°00°E

100°00°E. 10100

10090°E 1010

— A
10700 v 10000E

101 00E

Legend

A Radar Station
@ Rain Gauge (Validate 30%)
Elevation (m) Mean Bias (mm)

2565
>1.0
. 0.8-1.0

‘ 06-08
‘ 04-06
@ o2-04
0 © o0-02
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Table 3.
Results Before and After Bias Correction of Validation Stations using k-fold cross validation.
. . Correlation (mm) R? (mm) Mean Bias (mm)
Z-R Relationship Before After Before After Before After
Marshall/Palmer 0.678 0.761 0.808 0.850 0.154 0.999
Rosenfeld Tropical 0.618 0.729 0.775 0.829 0.120 0.948
Summer Deep Convection 0.670 0.757 0.805 0.848 0.176 0.990

The error metrics (RMSE and MAE) for radar-derived rainfall that were compared to gauge
observations before and after the application of IDW spatial bias correction are presented in
Table 4. Confirming the efficacy of IDW interpolation in enhancing rainfall estimation accuracy, the
correction significantly reduced errors across all Z-R relationships. ZR-MP demonstrated the most
significant improvement among the three equations, with a reduction in RMSE from 218.186 mm to
17.517 mm and MAE from 199.004 mm to 13.405 mm. This represents the most significant error
reduction overall. At first, ZR-RF exhibited the lowest pre-correction errors; however, its post-
correction performance was marginally inferior to that of ZR-MP. This suggests that despite a robust
baseline, ZR-RF has limited responsiveness to spatial bias adjustment. ZR-SD exhibited the highest
pre-correction errors (RMSE = 309.163 mm; MAE = 265.412 mm). However, these values were
reduced to 19.263 mm and 14.483 mm, respectively, by bias correction. Consequently, they remained
higher than those of ZR-MP and ZR-RF. Overall, these results indicate that IDW spatial interpolation
effectively mitigates systematic errors in radar rainfall estimates. Particularly, the ZR-MP equation
demonstrated the most balanced enhancement, as it combined substantial error reductions with
consistent agreement across terrain types.

Table 4.
Statistical Values Before and After Adjustment Using the IDW Spatial Interpolation Method.
. . Before Correction After correction
Z-R Relationship RMSE (mm) | MAE (mm) | RMSE (mm) MAE (mm)
Marshall/Palmer 218.186 199.004 17.517 13.405
Rosenfeld Tropical 309.163 265.412 19.263 14.483
Summer Deep Convection 191.622 170.765 17.719 13.571

4.4. Analysis of Flat and Mountainous Rainfall Considering Topography

Utilizing a DEM-based classification, the bias correction performance was evaluated separately
for flat and mountainous regions in order to evaluate terrain-related effects (Fig. 9). Slopes that were
less than 5° were classified as level, while those that exceeded 5° were classified as mountainous.
Then, statistical indicators of radar-gauge agreement were computed for each terrain zone, allowing
for the comparison of the efficacy of corrections in contrasting topographic conditions.

The mean radar-estimated rainfall for flat and mountainous areas is compared in Fig. 10 before
and Fig. 11 after bias correction. The ZR-RF relationship produced the highest totals, followed by
ZR-MP and ZR-SD, and all three Z-R relationships substantially overestimated rainfall prior to
correction. The uncorrected radar estimates exhibit a significant degree of variability, as evidenced
by the large error bars in both terrain types. The mean rainfall estimates decreased consistently across
all relationships after the IDW bias correction was implemented, with reductions of approximately 60
mm in both flat and mountainous zones. Reduced variability and enhanced reliability of the corrected
radar data were also indicated by the narrowing of the error bars. ZR-MP demonstrated the most
statistically robust performance of the three equations, resulting in rainfall estimates that were most
closely aligned with gauge observations and the lowest post-correction variability.
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Fig. 10. Mean radar-estimated rainfall before spatial bias correction in flat areas and mountainous areas for
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the three Z-R relationships.
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5. DISCUSSION

The suitability of various Z—R relationships for radar rainfall estimation and bias adjustment
during Tropical Storm Son-Tinh (15-23 July 2018) over the central river basin of Thailand was
assessed in this study. Radar data from the Phitsanulok C-band station were combined with gauge
observations from 89 rain stations. Spatial bias correction was implemented using IDW, and accuracy
was evaluated through five-fold cross-validation. The results emphasize the necessity of bias
correction before the operational use of radar rainfall products, particularly in regions with complex
terrain that encompasses both lowlands and mountainous areas. The analysis indicates that the
selection of the Z—R relationship significantly impacts the accuracy of radar rainfall, which is in
accordance with previous findings (Mahavik et al., 2021; 2025). ZR-MP relationship was the most
dependable of the three equations that were tested, as evidenced by the firm agreement between post-
correction performance and gauges (r = 0.761, R? = 0.850, and MBE = 0.999 mm). The RMSE and
MAE experienced considerable reductions in error, with the former decreasing to 17.517 mm and the
latter to 13.405 mm. These results verify that the combination of ZR-MP and IDW bias correction
produces highly dependable rainfall fields, which is in accordance with prior research (Goudenhoofdt
& Delobbe, 2009; Mahavik, 2017; Mahavik et al., 2024; 2025).

In contrast, ZR-RF and ZR-SD initially appeared to perform better in terms of numerical bias;
however, they both significantly overestimated rainfall. This may be indicative of the spatial and
temporal variability of Z-R performance, which is indicative of variations in storm structure in
relation to the conditions under which these relationships were established (Mapiam &
Sriwongsitanon, 2008; Mahavik et al., 2011). The results also suggest that spatial bias correction has
a more significant impact on the ultimate accuracy than Z-R selection. This study confirms that the
accuracy of radar rainfall across diverse terrain is considerably enhanced by the application of spatial
bias correction with IDW, which is supported by cross-validation. In addition to deterministic
correction methods, the integration of machine learning with ground-based rainfall data presents a
promising opportunity to further mitigate spatial bias and improve quantitative precipitation estimates
(Hassan et al., 2022; Mihulet et al., 2023; Mahavik et al., 2024; 2025).

6. CONCLUSIONS

Using reflectivity data from the Phitsanulok C-band radar in Thailand and rain gauge
observations, this investigation assessed the bias correction of event-based radar rainfall during
Tropical Storm Son-Tinh (15-23 July 2018). Clutter and attenuation effects were effectively
eliminated through data preprocessing with Py-ART, and rainfall was estimated using three Z—R
relationships. Initially, all equations overestimated rainfall, with Rosenfeld Tropical leading to the
largest deviations. Conversely, the Marshall-Palmer (ZR-MP) relationship provided the most
balanced estimates. Spatial bias correction, as well as five-fold cross-validation and IDW,
significantly enhanced radar—gauge agreement in both flat and mountainous regions. The most
dependable performance was obtained by ZR-MP among the tested relationships, as evidenced by
its significantly reduced errors and closer adherence to gauge measurements. These findings verify
that it is imperative to incorporate a spatial bias correction and an appropriate Z—R relationship in
order to enhance radar quantitative precipitation estimates in complex terrain. In order to improve
radar rainfall estimation during tropical storm events in Thailand and similar monsoon-dominated
regions, However, this study still has limitations regarding the number of rainfall observation
stations, which may not be sufficient, and radar data that are affected by blockage due to terrain
characteristics, remaining a constraint within the study area. For future research, the investigators
suggest expanding the analysis to include more advanced techniques, such as comparing the IDW
method with other bias correction and estimation approaches, including Kriging, co-Kriging,
Bayesian adjustment, or machine learning-based methods. These approaches could potentially
improve quantitative rainfall estimation in both mountainous and lowland areas, thereby supporting
more effective flood prevention planning and rainfall management.
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