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ABSTRACT 

Precise Digital Terrain Models (DTMs) are essential for mangrove carbon accounting and 

Measurement, Reporting, and Verification (MRV) frameworks that facilitate climate change 

mitigation. Although airborne photogrammetry and LiDAR are frequently employed for terrain 

extraction, their utilization in dense mangrove wetlands is limited by elevated expenses and operational 

intricacies. This work offers a novel assessment of the iPhone 12 Pro LiDAR sensor as an economical 

and portable option for Digital Terrain Model (DTM) development in mangrove ecosystems, filling a 

significant void in accessible carbon monitoring technology.  Utilizing the 3D Scanner App for iOS, 

the study gathered data from 12 locations (55 points per location) encompassing open regions, sparse 

canopies, and dense canopies, corroborated by 660 NRTK positioning points.  The precision of the 

LiDAR-derived Digital Terrain Model (DTM) was assessed by extensive statistical criteria, such as 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Bias, Pearson correlation coefficient, 

and 95% confidence intervals, thereby ensuring rigorous validation of consumer-grade mobile LiDAR 

for high-resolution topographic mapping. The results indicated exceptional accuracy in open 

environments (MAE < 0.1 m, negligible RMSE and bias), moderate precision in sparse canopies (MAE 

0.086-0.381 m), and diminished performance in dense vegetation (MAE up to 1.064 m, positive bias 

of 0.928 m).  Statistical analysis indicated negligible elevation fluctuation in open areas, however 

substantial outliers were seen in dense canopies.  Regression analysis indicated a robust association in 

open areas (R² = 0.956), a moderate correlation in sparse vegetation (R² = 0.799), and a lesser 

correlation in dense canopies (R² = 0.663), implying possibility for enhancement by allometric 

modifications.  Although professional LiDAR systems exhibit superior accuracy, the iPhone LiDAR 

is a pragmatic and cost-effective option for Digital Terrain Model production in open to moderately 

vegetated regions.  The system's portability and affordability render it especially advantageous for 

ecological monitoring and geoscientific applications in resource-constrained environments, however 

dense vegetation poses significant challenges.  These findings underscore the capability of consumer-

grade LiDAR technology to facilitate precise environmental monitoring while markedly decreasing 

expenses relative to professional systems. 
 

Keywords: LiDAR; IPhone; DTM; Mangrove; Allometric. 

 

 

1. INTRODUCTION 

Mangroves are salt-tolerant vegetation, comprising trees and shrubs, that flourish in coastal salty 

or brackish aquatic ecosystems (Shapiro, 2024). Mangrove has essential role for coastal region as the 

protector from great waves energy (Arnaud et al., 2023). Mangroves also offer the feeding and nursery 
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ground for marine live cycle through its large and branched roots (Sasmito et al., 2023; Suwa et al., 

2021). Its density coverage contributes to enhance carbon accumulation in coastal areas due to their 

advantageous intertidal location (Alongi, 2022; S. Song et al., 2023; Basyuni et al., 2023; Wirasatriya 

et al., 2022). Kauffman et al. (2018) discovered that mangroves possess a significantly greater carbon 

stock compared to terrestrial forests. This is attributed to their capacity to store more carbon both in 

their above-ground biomass and below the surface in their roots and sediment (e.g., Mcleod et al. 

2011; Donato et al. 2011, 2012). The measurement of carbon biomass offers critical insights into 

facilitating biodiversity conservation and climate change mitigation initiatives (Amelia et al., 2023; 

Paul et al., 2023; Wainwright et al., 2023). Unfortunately, mangrove forests have historically 

experienced substantial reductions, decreasing from 225,000 km² in the 1970s to 137,000 km² by 

2014, mostly owing to deforestation and deterioration (Friess et al., 2019; Lovelock et al., 2022). This 

loss has resulted in negative consequences (Arifanti et al., 2022), including weakened coastal 

protection, lower fisheries, heightened greenhouse gas emissions, and decreased ecosystem services 

such as nutrient cycling, which also impacts neighboring ecosystems like coral reefs and seagrass 

meadows (Bimrah et al., 2022; Friess et al., 2019). 

The integration of satellite imagery with UAV-based photogrammetry is growing as an efficient 

technique for evaluating biomass in mangrove forests (Gao et al., 2022; Hu et al., 2020; Tian et al., 

2023). Photogrammetry generates aerial photos, Digital Surface Models (DSM), and Digital Terrain 

Models (DTM) (Amuyou et al., 2022; Chan et al., 2021). Unfortunately, Digital Terrain Models 

generated by drones is limited in precision for wetland (tidal) regions. Basyuni et al., (2023) and 

Wirasatriya et al., (2022) utilize a Global Navigation Satellite Survey (GNSS) to develop a digital 

terrain model that facilitates the generation of canopy height models. Nevertheless, GNSS accuracy 

will decrease within the dense mangrove, resulting in a range of 0.6 to 10 meters. (Feng et al., 2021; 

Tomaštík & Everett, 2023). The other method options at the millimeter scale, void of canopy and 

signal constraints, may employ a water pass measurement or electronic total station; however, it 

necessitates more surveyors and a substantial expenditure (Jurado et al., 2020; Krause et al., 2019; 

Lynch et al., 2024). Thus, the DTM measurement causes the AGB investigation more costly and 

challenging for novice researchers with constrained financial resources.  

Commencing in the 2020’s iPhone integrated the Light Detection and Ranging (LiDAR) sensor 

in both the iPhone and iPad Pro (Corradetti et al., 2022), utilized for measurement and 3D object 

scanning (Luetzenburg et al., 2021; B. Song et al., 2023; Teppati Losè et al., 2022). This concept has 

attracted significant attention in both consumer and professional domains, especially for uses in 

geosciences, historical documentation, and digital mapping (Kottner et al., 2023; Mêda et al., 2023). 

Initial assessments, like those by (Vogt et al., 2021a) and (Murtiyoso et al., 2021), have contrasted 

precision with the conventional techniques such as terrestrial laser scanning (TLS) and close-range 

photogrammetry. These studies illustrate that the iPhone 12 Pro LiDAR's is potential for particular 

applications, including industrial 3D scanning and heritage preservation (Teppati Losè et al., 2022), 

however it exhibits limitations in accuracy and elevated point cloud noise (Gollob et al., 2021a; Teo 

& Yang, 2023). Implementing LiDAR into mobile devices represents a significant advancement in 

the accessibility of advanced geospatial data collection for all individuals. This is particularly crucial 

in extreme situations (Teo & Yang, 2023), such as the identification of forests and wetland regions, 

where further research is evidently required (Gollob et al., 2021a). 

The estimation of above-ground biomass (AGB) in mangrove ecosystems presents significant 

challenges, particularly in topographic mapping due to the dense canopy coverage (Basyuni et al., 

2023; Wirasatriya et al., 2022). Traditional methods rely heavily on GNSS and interpolation data to 

construct Digital Terrain Models (DTMs) (Li et al., 2023; Raza et al., 2023), yet these techniques 

often suffer from high bias and poor signal reception due to canopy obstruction (Tong et al., 2023). 

In this context, the integration of the iPhone 12 Pro LiDAR offers a promising alternative for efficient, 

compact, and instant topographic scanning (Corradetti et al., 2022; Di Stefano et al., 2021). Capable 

of capturing point clouds at approximately 9,745 points per square meter, the iPhone 12 Pro LiDAR 

provides a convenient solution for dense canopy environments, though its point density is 

considerably lower than that of traditional terrestrial laser scanning (TLS) systems, which can achieve 
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around 469,856 points per square meter (Razali et al., 2022; Teppati Losè et al., 2022). Despite its 

potential, the application of iPhone 12 Pro LiDAR for AGB estimation, particularly in DTM 

development, remains underexplored. Nonetheless, with the growing adoption of LiDAR-equipped 

smartphones in multidisciplinary science, there is significant promise for advancing the accuracy and 

accessibility of mangrove ecosystem assessments. 

Referring (Giri et al., 2011), Indonesia encompasses more than 3.39 million hectares of mangrove 

forests, representing roughly 22% of the global mangrove area. Estimating biomass in these 

environments is difficult (Basyuni et al., 2023; Wirasatriya et al., 2022), mostly due to GNSS field 

surveying limitations in marshes and forests, such as signal obstruction, multipath errors, and 

atmospheric influences (Tomaštík & Everett, 2023; Yang et al., 2020). This research seeks to address 

these issues by developing and validating novel allometric models that calibrate iPhone LiDAR-

derived Digital Terrain Models (DTMs) for mangrove ecosystems and forests. This project aims to 

enhance the accuracy of allometric correction and the utilization of cost-effective LiDAR data for 

generating Digital Terrain Models (DTM) for biomass evaluation and various topographic 

applications. This is achieved by combining high-precision GNSS-RTK data with the characterization 

of mangrove canopy density. This will enhance environmental monitoring in complex coastal and 

forest ecosystems, making it more efficient and economical.  
 

2. STUDY AREA  

 

The study was conducted in Rembang Regency, focusing on the villages of Pasar Banggi, 

Tireman, and Kabongan Lor (6°42'7.01"S - 111°22'51.76"E, Fig. 1). This region encompasses 

approximately 36 to 45 hectares over a 3.8 km coastal line.   

 
Fig. 1. Research location in Pasarbanggi, Tireman, and Kabonganlor, this site study 1-2-3-4-5 around the sand 

beach when the sea low tide, 6-10-11 in Dense mangrove canopy and 7-8-9-12 in Thin mangrove canopy. 
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This region is ever evolving and features a combination of sandy beaches, mudflats, rehabilitated 

mangrove forests, aquaculture ponds, and adjacent industrial facilities (Iryanthony, et al., 2025). The 

mangrove region comprises six primary tree species: Rhizophora apiculata, R. mucronata, R. stylosa, 

Avicennia marina, Excoecaria agallocha, Sonneratia. R. apiculata and R. mucronata are the 

predominant species, indicating the efficacy of the region's conservation initiatives (Iryanthony, et 

al., 2025; Iryanthony, et al., 2025; Soeprobowati et al., 2024).  

The region comprises four distinct zones: the ocean, sandy shoreline, mangrove salt ponds, and 

populated areas, exemplifying a complex and diverse coastal environment (Bagas et al., 2024; 

Mustofa et al., 2023). The data collecting process occurred from October 11 to 14, 2024.  The tidal 

dynamics in the coastal region of Rembang Regency indicated a rising tide began at 01:03 WIB, 

peaking at 04:22 WIB, followed by the ebb phase initiating at approximately 07:45 WIB and attaining 

the lowest tide point at 11:18 WIB. This tidal pattern is a component of the daily cycle shaped by the 

gravitational affects of the moon and sun, along with the local coastal topography. The northern 

section of the research site is a sandy beach plain, whereas the southern area consists of a mudflat that 

transitions into a mangrove forest. Beyond the mangroves are salt ponds and intense shrimp farms. 

Measurements in the open area were performed on the seashore plain, a highly exposed site devoid 

of vegetation and human settlements. The research site and the arrangement of sample sites are 

illustrated in Fig 1. 

 

3. DATA AND METHODS 

 

This section outlines a cohesive methodological framework aimed at maintaining consistency 

across data gathering, processing, and validation phases.  The workflow is organized in a sequential 

manner, beginning with mobile LiDAR surface data collection, proceeding to high-precision GNSS 

measurements, and culminating in database integration and statistical validation.  In this context, the 

iPhone 12 Pro LiDAR functions as the primary source of high-resolution elevation data, supplying 

the essential dataset for further studies.  All resulting datasets were carefully aligned via 

georeferencing, ground control integration, and GIS-based processing to facilitate rigorous cross-

comparison, uncertainty evaluation, and quantitative accuracy assessment. 

 

3.1. iPhone 12 Pro LiDAR 

 

The iPhone 12 Pro and iPhone 12 Pro Max feature a LiDAR (Light Detection and Ranging) 

sensor that improves depth-sensing functionality. The iPhone 12 Pro features a 12 MP camera system 

including three distinct cameras (1x telephoto, 1x wide, and 1x ultrawide), a flashlight, and a LiDAR 

sensor on the rear of the device (Kottner et al., 2023). The iPhone 12 Pro's rear camera assembly 

contains an iLiDAR module featuring a vertical cavity surface-emitting laser (VCSEL) as the emitter 

and a single-photon avalanche diode (SPAD) sensor integrated with a complementary metal-oxide 

semiconductor (CMOS) for signal detection (Gollob et al., 2021b; Mikalai et al., 2022; Vogt et al., 

2021b). The VCSEL operates in the near-infrared (NIR) spectrum, at approximately 800 nm, 

generating a measuring array comprising 576 points, 12 x 12 dot matrix (Kottner et al., 2023) or 24 

× 24 points per photon burst (King et al., 2023; Luetzenburg et al., 2021). The point density of this 

array adheres to a linear trajectory on a logarithmic scale, indicating that uncertainty increases with 

distance (7225 points per m² at 0.25 m, decreasing to 150 points per m² at 2.5 m) (Luetzenburg et 

al., 2021). In adequately illuminated environments, the iLiDAR module can measure distances up to 

5 meters, possesses an instantaneous field of view (IFOV) of 90 degrees, and exhibits an average 

deviation of approximately 10 millimeters from the actual depth measurement (King et al., 2022, 

2023). 

The current investigation utilized LiDAR scanning with the 3D Scanner App (version 2.1.3) on 

iOS 18.2.1, obtained from the iOS App Store, consistent with a prior study (King et al., 2023b; 

Luetzenburg et al., 2021).  Data acquisition was conducted at a scanning height of approximately 1–
1.2 meters to guarantee uniform coverage throughout the surveyed region.  The LiDAR point cloud 
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acquisition was set up with automated texturing, processing of small models, automatic orientation 

for diminutive items, and GPS-tagged scans to improve spatial referencing.  GPS tagging was 

essential for enabling georeferencing corrections, given that the positional accuracy of field-acquired 

data fluctuated between 3 and 5 meters, as demonstrated by the 3D Scanner output in LAS format.  

The acquired high-density point cloud data were subsequently transferred into CloudCompare, an 

open-source LiDAR processing application (Kottner et al., 2023).  In CloudCompare, Ground Control 

Points (GCPs) were implemented to enhance spatial precision, and the LAS point cloud was 

transformed into a 3D mesh representation (Luetzenburg et al., 2021).  The processed data were 

ultimately exported in GeoTIFF format for subsequent spatial analysis and incorporation into 

Geographic Information System (GIS) procedures.  This methodological approach guarantees 

superior terrain reconstruction, enhancing the capabilities of mobile LiDAR technology for accurate 

topographic mapping and geospatial analysis. 

  

3.2. Real Time Kinematic (RTK) survey  

 

The present investigation achieved precise coordinate collection using the Global Navigation 

Satellite System (GNSS) Geomate SG7 receiver. To enhance positional accuracy, the study utilized 

Network Real-Time Kinematic (NRTK) corrections (Nik Azhan Hakim et al., 2023; Zeybek et al., 

2023; Zvirgzds & Celms, 2020), implementing a Continuously Operating Reference Station (CORS) 

within a 2–6 km Line of Sight (LOS) for optimal performance (Ji et al., 2022; Yurdakul & Kalaycı, 

2022). To ensure optimal performance, a stable internet or mobile network connection was maintained 

throughout the survey. The GNSS data (Fig. 2) was acquired while stationary, employing the Geomate 

SG7 NRTK method, which yielded highly precise measurements with a horizontal precision of 8 mm 

(Kanellopoulos et al., 2019; Pepe, 2018) and a vertical accuracy ranging from 15 mm to 25 mm for 

distances under 10 km (Bernstein & Janssen, 2022; Yurdakul & Kalaycı, 2022). 

The NRTK approach facilitated swift location determination, attaining a fixed answer in roughly 

5 seconds in unobstructed environments. Data collecting beneath dense mangrove canopies 

necessitated prolonged processing durations owing to signal attenuation.  The research was carried 

out in three different environmental settings: sandy open fields, moderately dense canopy, and totally 

dense mangrove canopy.  Each surveyed site consisted of 55 measurement points, with three identified 

as Ground Control Points (GCPs) at strategically chosen locations (samples 1, 23, and 55).  This 

stringent process guaranteed precise geospatial data acquisition, facilitating dependable integration 

with LiDAR-derived datasets for high-resolution topographic assessment (Table 1). 
Table 1.  

The report provides a summary of the RTK survey's (mean) elevation in orthometric terms, sample size, 

standard deviation, standard error, and canopy cover classifications, as well as their typical locations 

and preparation guidelines for the survey. 

Site condition NDVI Class Canopy Site N Mean (m) SD (m) 

Coastal Sand Beach  -1 to 0,32 No 1 55 0,912 0,049 

Coastal Sand Beach  -1 to 0,32 No 2 55 -0,224 0,053 

Coastal Sand Beach  -1 to 0,32 No 3 55 -0,168 0,020 

Coastal Sand Beach  -1 to 0,32 No 4 55 0,222 0,106 

Coastal Sand Beach  -1 to 0,32 No 5 55 0,636 0,144 

Thin mangrove canopy 0,43 to 1 High 6 55 1,002 0,398 

Dense mangrove canopy 0,33 to 042 Mid 7 55 1,556 0,201 

Dense mangrove canopy 0,43 to 1 High 8 55 0,327 0,121 

Dense mangrove canopy 0,33 to 042 Mid 9 55 0,285 0,282 

Thin mangrove canopy 0,33 to 042 Mid 10 55 0,953 0,387 

Thin mangrove canopy 0,43 to 1 High 11 55 0,040 0,208 

Dense mangrove canopy 0,43 to 1 High 12 55 1,212 0,920 
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Fig. 2. (a) RTK data collecting was performed in an open sandy beach setting, encompassing points 1 to 

55, (b) RTK point capture conducted in sparse canopy circumstances, demonstrating difficulties associated 

with partial vegetative cover, (c) Dense canopy conditions required the use of a bridge to get ground control 

points in obstructed locations, (d) Summary of a location where 55 RTK points were effectively obtained, 

illustrating diverse topography and vegetation cover conditions. 
 

3.3. LIDAR-derived DTM accuracy assessment 

 

The 3D Scanner application on an iPhone 12 Pro was utilized to gather LiDAR-based field data 

for this research. The application stored georeferenced information in an XYZ format. Ground 

Control Points (GCPs) in CloudCompare, an open-source LiDAR processing software, were utilized 

to calibrate the raw data and ensure excellent spatial accuracy. Upon meticulous rectification, the 

dataset was converted into a raster format, facilitating the extraction of precise pixel values essential 

for constructing a robust Digital Terrain Model (DTM). The subsequent phase involved integrating 

Real-Time Kinematic (RTK) survey points with the LiDAR-generated Digital Terrain Model (DTM) 

utilizing ArcGIS Pro. This facilitated a comprehensive comparison. The meticulously structured 

dataset in Excel provided the basis for extensive statistical studies. A comprehensive accuracy 

assessment and error analysis were conducted in Excel to ensure the reliability and precision of the 

elevation data obtained from the LiDAR device. This multi-step strategy enables the use of consumer-

grade devices for high-accuracy topographic mapping in challenging field situations by integrating 

modern mobile sensor technology with meticulous data processing and validation techniques. 

This study meticulously assessed the accuracy of the Digital Elevation Model (DEM) obtained 

by LiDAR by comparing GNSS survey data with LiDAR measurements collected via an iPhone 

across a 55-point cross-section comprising 12 distinct locations (Fig. 3). We employed significant 

statistical metrics to ascertain the accuracy of the outcomes.  
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Fig. 3. The process includes building a DTM utilizing the iPhone 12 Pro LiDAR, corroborating it with GNSS-

RTK data, and subsequently producing CSV data for Excel importation. 

 

The metrics considered are Root Mean Square mistake (RMSE) (Gollob et al., 2021b), which 

assesses the magnitude of the overall mistake; Mean Absolute Error (MAE), which evaluates the 

average absolute deviation; and Bias (King et al., 2022, 2023; Kottner et al., 2023), which identifies 

systematic bias in elevation estimations. The Pearson Correlation Coefficient (r) was utilized to 

determine the strength and direction of the linear relationship between GNSS and LiDAR-derived 

elevations. Confidence Intervals (CI) of 95% were computed for each error metric to enhance the 

reliability evaluation (King et al., 2023b; B. Song et al., 2023). Confidence intervals are an effective 

method for quantifying uncertainty. This comprehensive validation methodology ensures the 

accuracy of the LiDAR-derived DEM, enabling its application in high-resolution topographic 

mapping. This enhances the use of mobile LiDAR technology in geospatial analysis. While a box plot 

does not explicitly present the standard deviation (B. Song et al., 2023; Vogt et al., 2021), it facilitates 

its estimation and offers valuable insights into the data distribution, variability, and potential outliers. 

 

                𝑀𝐴𝐸 = (1/𝑛) ∑(𝑖 = 1)𝑛|𝑦𝑖 − ŷ𝑖|                                                                                (1) 

 

where 𝑦𝑖 denotes the observed value, ŷ𝑖 represents the predicted value, and 𝑛 indicates the total 

number of observations. 

 

                      𝐵𝑖𝑎𝑠 = (1/𝑛) ∑(𝑖 = 1)𝑛(𝑦𝑖 − ŷ𝑖)                                                                                (2) 
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where 𝑦𝑖 is the observed value, ŷ𝑖 is the predicted value, and 𝑛 denotes the total number of 

observations. 

 

                       𝑅𝑀𝑆𝐸 = √(1/𝑛) ∑(𝑖 = 1)𝑛(𝑦𝑖 − ŷ𝑖)
2                                                                         (3) 

 

where 𝑦𝑖 represents observed values, ŷ𝑖 denotes predicted values, and 𝑛 is the number of observations. 

 

                                 𝑟 =  [ 𝑛∑(𝑥𝑦) −  (∑𝑥)(∑𝑦) ] /√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]                      (4) 
 

where 𝑥 𝑎𝑛𝑑 𝑦 are paired observed and predicted values, respectively, and 𝑛 is the sample size. 

 
 

4. RESULTS AND DISCUSSIONS 

 

4.1. Positional Accuracy of iPhone 12 Pro Across Varying Vegetation Densities 

 

The findings indicate that the positional accuracy of the iPhone 12 Pro, when adjusted with three 

Ground Control Points (GCPs) per location, is significantly affected by canopy cover environments.  

In unobstructed environments, the device operates at peak efficiency, providing a low mean absolute 

error (MAE < 0.1 m), a strong correlation with GNSS RTK data (up to r = 0.989), and negligible bias 

and RMSE—especially at Locations 3, 4, and 5—indicating accuracy to GNSS RTK in clear settings.  

Nonetheless, precision diminishes beneath medium-density canopy cover. Some places, such as 

Location 9, exhibit a robust correlation (r = 0.918) and a low mean absolute error (MAE) of 0.086 m, 

whereas others, like Location 10, demonstrate considerable deterioration, with an MAE of 0.381 m, 

a root mean square error (RMSE) of 0.482 m, and a weak correlation (r = 0.329). Performance is least 

effective in densely canopied regions, where errors significantly increase (e.g., Location 6: MAE = 

1.064 m, bias = 0.928 m), and correlation may become negative (e.g., Location 12: r = -0.078), 

suggesting positional estimates are inconsistent with real movement or location.  The findings indicate 

that the iPhone 12 Pro is inadequate for high-precision mapping in densely vegetated areas, while it 

demonstrates significant promise for accurate placement in open or semi-open regions (Table 2).    

 
Table 2. 

Summary statistics of GNSS RTK and iPhone 12 Pro location estimates at each site under different 

canopy conditions, including their mean values for the entire observation. 

Canopy 

criteria Site 

MAE 

(meters) 

Bias 

(meters) 

Pearson 

Correlation 

Coefficient (r) 

RMSE 

(m) Bias (m) 

No canopy 

covered 

1 0,137 0,137 0,579 0,156 -0,137 

2 0,166 -0,164 0,693 0,190 0,164 

3 0,039 -0,035 0,782 0,045 0,035 

4 0,058 0,058 0,982 0,061 -0,058 

5 0,082 0,082 0,989 0,085 -0,082 

medium-

density 

canopy-

covered 

7 0,154 -0,028 0,514 0,168 0,028 

9 0,086 -0,011 0,918 0,107 0,012 

10 0,381 0,232 0,329 0,482 0,232 

dense canopy 

covered 

6 1,064 0,928 0,726 0,963 0,928 

8 0,121 0,077 0,092 0,276 -0,077 

11 0,234 -0,138 0,307 0,371 -0,138 

12 0,345 0,240 -0,078 0,489 -0,249 
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Elevation analysis of the Coastal Sand Beach and mangrove canopy zones indicates differing 

accuracy levels between the DTM_IP12 model and GNSS-RTK readings, significantly affected by 

topographic and surface features.  In flat, unobstructed beach regions (e.g., Site 1 and Site 3), 

DTM_IP12 demonstrates great consistency and negligible variation from RTK data (median 

differences <0.05 m), signifying robust model reliability.  Discrepancies arise in regions characterized 

by micro-topographic complexity or transitional surfaces (e.g., Site 2 and Site 5), where DTM_IP12 

frequently overestimates or underestimates elevations by as much as ±0.2 m.  In low-canopy 

mangrove areas, precision fluctuates with surface roughness and flora diversity.  Sites 7 and 9 provide 

strong concordance, however Site 10 shows a significant overestimation (~±0.3 m), presumably 

attributable to residual canopy interference despite thin categorization.  Under dense mangrove cover, 

performance markedly deteriorates, exhibiting increased vertical spreads and outliers in DTM outputs 

(e.g., Site 6 and Site 12), attributable to signal distortion caused by dense vegetation.  Nonetheless, 

several locations (e.g., Site 8) have a strong correlation between methodologies, underscoring 

localized effectiveness in areas where vegetation and topography are generally homogeneous. The 

accuracy of DTM_IP12 is significantly dependent on vegetation density and surface complexity, with 

model performance diminishing in diverse or densely vegetated areas (Fig. 4). 

 
Fig. 4. Performance Comparison of Elevation RTK (green) and iPhone 12 (yellow) Models Across Coastal 

Sand Beach, thin mangrove canopy, and dense mangrove canopy in Microtopography. 

 

 4.2. Interplay Between Canopy Density and UAV-Derived Horizontal and Vertical Accuracy 

  

In open field circumstances (Fig. 5, sites 1 to 5), the horizontal accuracy regularly exceeds that 

of dense mangrove areas, indicating enhanced positioning precision where canopy interference is 

limited.  Nonetheless, the vertical precision in these broad fields poses issues, since minor topographic 

discrepancies occur more frequently than in thick mangrove areas. For example, Site 1 shows a little 

vertical variation of 0.5 meters between datasets utilizing Ground Control Network (GCN) and those 

lacking Ground Control Points (GCPs), while presenting a substantial horizontal disagreement of 11 

meters. Conversely, Site 9, distinguished by minimal canopy cover, exhibits a vertical discrepancy of 

3.1 meters and a horizontal error of 1.5 meters, signifying a significant influence of vegetation on 

positional precision.  Site 11, characterized by a dense mangrove canopy, exhibits the greatest vertical 

variation of 4.2 meters, while displaying a comparatively minimal horizontal variance of 1 meter.  

These findings highlight the intricate relationship between canopy density and the location precision 

gained from UAVs.  Although broad fields enhance horizontal accuracy, vertical precision is uneven 

due to variations in terrain.   
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Fig. 5. The LiDAR-generated point cloud from the iPhone, including XYZ correction in CloudCompare (CC), 

produces a Digital Terrain Model (DTM) prior to Ground Control Point (GCP) correction (white to black) and 

subsequent to GCP correction (red to blue), with the DTM matching with RTK data. 
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In contrast, dense canopies present considerable vertical obstacles but may mitigate horizontal 

drift owing to their uniform construction. These results are essential for enhancing UAV data 

collection methodologies in diverse coastal settings. Fig. 6 delineates the discrepancies in elevation 

measurements between the DTM iPhone GCP - No GCP and the RTK survey.  

 
Fig. 6. The elevation value is assessed under three scenarios: open, sparse, and dense mangrove canopy; 

data conditions include RTK, DTM iPhone with GCP correction, and DTM iPhone without GCP. 

 

4.3. Development and Application of Correction Models for iPhone LiDAR Elevation Data 

Across Varying Vegetation Densities 

 

The elevation data acquired by iPhone LiDAR were juxtaposed with high-precision GNSS-RTK 

measurements to assess accuracy across three land cover categories: open fields, sparse mangrove 

canopies, and dense mangrove canopies. Linear regression analysis yielded correction formula 

tailored to each situation, demonstrating a substantial association in open areas (R² = 0.956), a 

moderate correlation in thin canopies (R² = 0.7991), and a weaker correlation in dense canopies (R² 

= 0.663). These correction models enable the proper calibration of iPhone LiDAR elevation data to 

achieve RTK-level precision (Fig. 7). This method improves the functionality of mobile LiDAR 

sensors, especially in coastal and mangrove regions where dense foliage might affect measurement 

accuracy.  Utilizing these methods, researchers can conduct swift and reasonably precise elevation 

evaluations without requiring cumbersome or costly apparatus. Furthermore, including these models 

into data pipelines or mobile applications provides a pragmatic, scalable approach for conducting field 

surveys in intricate and dynamic settings, hence enhancing comprehensive environmental monitoring 

initiatives.   

 
Fig. 7. Scatterplots showing elevation correction equations derived from iPhone LiDAR and GNSS-RTK 

data across open fields, thin mangrove canopy, and dense canopy conditions. 
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5. DISCUSSION  

 

 Creating a Digital Terrain Model (DTM) in mangrove ecosystems presents considerable 

difficulties for traditional techniques like GNSS, photogrammetry, and total stations, owing to the 

dense canopy and challenging topography (Basyuni, Amelia, et al., 2025; Basyuni et al., 2023; 

Basyuni, Mubaraq, et al., 2025; Wirasatriya et al., 2022). Although drone photogrammetry is effective 

for surface mapping, it frequently yields biased elevation data (Basyuni, Mubaraq, et al., 2025; 

Wirasatriya et al., 2022). LiDAR provides excellent precision; yet, it is expensive and presents 

dangers to equipment in saline conditions (Grottoli et al., 2021; Rogers et al., 2020; Zhang & Zhu, 

2023). An option is iPhone-based LiDAR scanning, offering a cost-effective, efficient, and low-risk 

method that captures topography data (King et al., 2022, 2023b; Luetzenburg et al., 2021) over 

distances of 25 to 150 meters each scan. Its portability and compatibility with waterproof casings 

render it appropriate for mangrove environments, presenting significant potential for DTM creation. 

Scatter plot-derived linear regression equations (Y = aX + b) serve as an effective calibration function 

to adjust iPhone LiDAR elevation (Z) data in relation to GNSS-RTK standards.  

The coefficient of determination (R²) measures the strength of the association, revealing a high 

correlation in open areas (R² = 0.956), a moderate correlation in sparse mangrove canopies (R² = 

0.7991), and a lesser correlation beneath dense canopies (R² = 0.663). The fluctuations indicate that 

vegetation density influences LiDAR accuracy. The regression equations provide a robust correction 

strategy, particularly in open and semi-obstructed situations, enhancing the applicability of 

smartphone-based LiDAR for forthcoming elevation research in various coastal contexts. This linear 

regression model can be advanced into an allometric model contingent upon land circumstances 

(NDVI, canopy density, automatic classification), facilitating economical and rapid topographic 

mapping utilizing mobile LiDAR. This methodology can function as a foundation for calibrating 

image-based machine learning and mobile elevation data.  

In difficult site conditions characterized by steep slopes and deep forest, the full-waveform Riegl 

LMS-Q560 LiDAR, affixed to a DA42 MPP aircraft, achieved robust DTM accuracy (RMSE 0.15–
0.62 m), Notwithstanding diminished point densities, effective interpolation techniques (NN, TPS) 

maintained model accuracy, confirming LiDAR's dependability for ecological and forestry purposes 

(Cățeanu & Ciubotaru, 2021). Although LiDAR and UAS photogrammetry exhibit similar vertical 

accuracy in unobstructed environments (±0.03 to ±0.06 m RMSE) (Rogers et al., 2020), this study's 

results indicate a systematic escalation in error beneath vegetative cover, with average RMSE values 

of 0.107 m in open regions, 0.252 m under medium-density canopies, and 0.525 m under dense 

canopies, highlighting the substantial influence of vegetation complexity on DSM accuracy.  

In alignment with the results of (Luetzenburg et al., 2021), our research similarly indicates that 

the LiDAR sensor of the iPhone 12 Pro attains a remarkable RMSE of ±1 cm for small objects (side 

length > 10 cm) and ±10 cm for larger models (130 × 15 × 10 m), thereby reinforcing its viability 

as a cost-efficient substitute for conventional remote sensing methods in geoscientific applications. 

(King et al., 2023b) illustrate that the iPhone 12 Pro LiDAR (iLiDAR) mounted on a DJI Phantom 4 

quadcopter offers a viable low-cost solution for snow depth estimation, attaining a root mean square 

error (RMSE) of 3 cm and an absolute mean error of 2.5 cm relative to conventional snow ruler 

measurements, underscoring its potential for accurate and economical snow monitoring. (King et al., 

2022) further validated its high precision (RMSE ~6 mm), indicating its applicability for citizen 

research initiatives. 

The findings of this investigation corroborate and enhance existing knowledge regarding the 

reliability of consumer-grade Apple LiDAR systems, while also demonstrating their applicability in 

creating Digital Terrain Models (DTMs) of mangroves with varying canopy densities. Previous 

studies have consistently shown that iPhone and iPad LiDAR achieve centimetric to sub-centimetric 

accuracy in both controlled and open settings, with inaccuracies increasing during dynamic data 

collection and extensive spatial coverage due to cumulative pose and SLAM-related drift 

(Luetzenburg et al., 2021; Teo & Yang, 2023). Significant accuracy has been recorded in various 
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applications, such as snow depth estimation, forensic documentation, anthropometry, and rapid 

environmental monitoring, with biases and RMSE values typically remaining under 1 cm (King et al., 

2022; Kottner et al., 2023; Mikalai et al., 2022). The method by which applications handle data is the 

paramount aspect influencing the ultimate quality of the metrics. Applications such as PIX4DCatch 

and SiteScape, which exhibit robust drift control and global orientation, consistently outperform their 

counterparts. Conversely, the 3D Scanner App and EveryPoint are more prone to errors due to noise 

and orientation during extended scans (Corradetti et al., 2022; Teppati Losè et al., 2022).  

The present results align with these tendencies, indicating enhanced DTM accuracy in open 

mangrove areas, intermediate precision under sparse canopies, and considerable decline in dense 

vegetation due to occlusion, signal attenuation, and vertical bias. These constraints illustrate the 

challenges of employing mobile LiDAR in wetlands with intricate structures, although they also 

indicate potential improvements through enhanced acquisition techniques and allometric correction. 

While professional LiDAR remains superior in dense canopies, the iPhone 12 Pro LiDAR presents a 

robust, cost-effective alternative for high-resolution Digital Terrain Model mapping in mangrove 

regions characterized by sparse to moderate vegetation. It additionally facilitates scalable and 

accessible MRV applications. 

 

 

6. CONCLUSIONS 

 

This research demonstrates that iPhone LiDAR can generate dependable and accurate Digital 

Terrain Models (DTMs), especially when supplemented by GNSS-RTK Ground Control Points 

(GCPs).  In dense canopy conditions, GNSS signals often deteriorate, leading to possible inaccuracies 

and vertical bias. Nonetheless, iPhone LiDAR ensures data consistency across diverse contexts, 

particularly in aquatic and exceptionally dark circumstances.  The robust correlation (R²) seen in open 

field circumstances indicates that these locations can be relied upon to rectify iPhone LiDAR-

generated DTMs.  Moreover, employing allometric equations presents a viable alternative for 

rectifying terrain data in the absence of GNSS-based ground control points, offering a cost-effective 

method to enhance survey accuracy without compromising data integrity. This method possesses 

considerable promise for extensive environmental mapping and monitoring applications, particularly 

in financially limited or logistically difficult regions.  
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