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ABSTRACT 

Hydrological drought is a climate-induced disaster that directly impacts the agricultural sector, 

particularly rice production. This study aims to model drought in a spatial-temporal context and analyse 

its impact on rice production in the Upper Bengawan Solo River Basin, Central Java, Indonesia, over 

the period 2017–2024. The analysis was conducted using Geographic Information Systems (GIS) based 

on Sentinel-2A satellite imagery, annual rainfall data, and rice production records. Drought severity 

was quantified using the Normalised Difference Drought Index (NDDI). The results of the drought 

modelling were validated through correlation and regression analyses with rainfall data and the extent 

of drought-affected areas. Meanwhile, the impact of drought on rice production was assessed using 

non-parametric analysis via the LOWESS method. The findings indicate that the spatial-temporal 

approach is effective in identifying drought distribution and trends. Spatially, severe drought occurred 

in Wonogiri Regency, covering up to 1,203,014.20 hectares, while temporally, the peak occurred in 

2018 with a drought area of 571,438.60 hectares. Validation tests revealed a strong positive correlation 

between NDDI values and drought extent (r = 0.84), and a negative correlation between NDDI and 

rainfall (r = -0.74), indicating that higher NDDI values correspond with wider drought-affected areas 

and lower rainfall. Linear regression analysis confirmed NDDI as a significant indicator for drought 

monitoring, with a coefficient of determination R² = 0.706, suggesting that 70.6% of the variance in 

drought area can be explained by NDDI, and a statistically significant p-value (p = 0.009, p < 0.05). 

Moreover, LOWESS analysis showed a non-linear (U-shaped) relationship between NDDI and rice 

production, with the highest yields at low NDDI values (2.42–2.44 million tons), declining at medium 

NDDI levels (~2.20 million tons), and rising again at high NDDI values (2.35 million tons). This 

pattern suggests that the impact of drought on rice production is not linear and is likely influenced by 

additional factors such as irrigation infrastructure and crop management practices. Overall, this study 

affirms that satellite-based spatial-temporal modelling is an effective approach for analysing 

hydrological drought and understanding its implications for agricultural productivity. 

 
Key-words: Spatio-temporal modelling; Hydrological drought; Sentinel-2A satellite imagery; Rice 

production. 

 

1. INTRODUCTION 

Ongoing global climate change is contributing to rising temperatures and increasing instability in 

atmospheric conditions worldwide, resulting in more frequent extreme weather events (Hadibasyir et 

al., 2023; Mustikaningrum et al., 2023). 
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According to the Meteorology, Climatology, and Geophysics Agency (BMKG), Indonesia is 

generally experiencing higher-than-average air temperatures. In fact, the average air temperature in 

September 2024 was the highest ever recorded for that month since 1981 (BMKG, 2025). These 

climate dynamics are causing fluctuations in regional water availability and have the potential to 

elevate the risk of drought, ultimately exerting negative impacts on the agricultural sector, particularly 

rice production (Anna et al., 2024; Arifin et al., 2023; Kumar et al., 2022; Sigit & Anna, 2023). 

Drought is a hydrometeorological disaster that frequently affects various regions across 

Indonesia. Over the five-year period from 2020 to 2024, a total of 1,088 drought-related disasters 

were recorded, resulting in 23 fatalities, 104 injuries, 6,349,633 people affected, 810 displaced 

persons, and 11,895 damaged houses. In the Upper Bengawan Solo River Basin, which encompasses 

the cities and regencies of Surakarta, Boyolali, Klaten, Wonogiri, Sukoharjo, Sragen, and 

Karanganyar, 36 drought incidents were reported, causing 3 deaths, 4 injuries, 108,742 people 

affected, 5 displaced persons, and 321 damaged houses (National Disaster Management Agency, 

2025).  

The severity of the drought’s impact has led residents in the study area to become more alert to 

such disasters, particularly as the region is dominated by food crop agriculture, with approximately 

60% of the population engaged in the agricultural sector (Central Java Provincial Statistics Agency, 

2024). Prolonged droughts can reduce water availability for irrigation and domestic use (Bibi & 

Rahman, 2023; Christian et al., 2023; Hussain et al., 2023; Zhang et al., 2023), and diminish rice 

production, ultimately threatening local food security (Laksono & Nurgiyatna, 2020; Safura & 

Sekaranom, 2024).  

With technological advancements, the detection of hydrological drought can now be conducted 

rapidly using satellite imagery data through several approaches, including the Normalised Difference 

Vegetation Index (NDVI), Vegetation Health Index (VHI), Normalised Difference Water Index 

(NDWI), Land Surface Temperature (LST), and Normalised Difference Drought Index (NDDI). Each 

approach has its own strengths and limitations. A detailed summary of the advantages and 

disadvantages of each method is presented in Table 1.  

 
Table 1.  

Advantages and Limitations of Satellite Image-Based Drought Detection Index Methods. 

Method Drought Detection 

Process 

Advantages Limitations Reference 

Normalised 

Difference 

Vegetation 

Index NDVI) 

Drought detection 

based on plant 

greenness 

Most widely used 

for vegetation 

monitoring 

Relies on a single 

parameter 

(Mirzaee & 

Mirzakhani Nafchi, 

2023) 

Vegetation 

Health Index 

(VHI) 

Drought detection 

based on vegetation 

health 

More accurate than 

NDVI as it 

incorporates 

temperature factors 

Requires 

additional indices 

(Zeng et al., 2022) 

Normalised 

Difference 

Water Index 

(NDWI) 

Drought detection 

based on moisture and 

water content 

More accurate than 

NDVI as it 

incorporates water-

related factors 

Susceptible to 

atmospheric 

interference and 

open land 

conditions 

(Marfuah & Useng, 

2023) 

Land 

Surface 

Temperature 

(LST) 

Detects drought based 

on land surface 

temperature 

Capable of 

detecting drought 

thermally 

Requires 

calibration due to 

strong influence 

of land cover and 

atmosphere 

(Shashikant et al., 

2021) 

Normalised 

Difference 

Drought 

Index NDDI) 

Drought detection 

combining vegetation, 

soil moisture, and 

water 

More accurate than 

other methods as it 

combines NDVI 

and NDWI 

Requires more 

complex 

multispectral data 

(Artikanur et al., 

2022; Mujiyo et al., 

2023) 
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Meanwhile, drought trends and distribution can be effectively identified through spatio-temporal 

modelling using Geographic Information Systems (GIS) (Boori et al., 2022; Mohammed et al., 2023). 

Satellite imagery employed for hydrological drought analysis varies and includes Landsat, MODIS, 

and SENTINEL. Sentinel-2A satellite imagery is among the most widely used types due to its high 

spatial resolution and its capability to monitor vegetation and soil moisture regularly (Alonzo et al., 

2023; Staszel et al., 2024; Varghese et al., 2021). 

Several previous studies have analysed drought using satellite imagery through various 

vegetation index approaches. Almouctar et al. (2024) analysed drought using the NDVI index and 

soil surface temperature. Bashit et al. (2022) combined NDVI, NDWI, and LST in their research. 

Meanwhile, Wolteji et al. (2022) applied a satellite image-based approach incorporating several 

indices, namely the Normalised Difference Vegetation Index (NDVI), Vegetation Health Index 

(VHI), Land Surface Temperature (LST), and Normalised Difference Water Index (NDWI). 

Regarding the use of spatio-temporal models for drought analysis, Alito and Kerebih (2024) 

stated that these models play a crucial role in agricultural decision-making, particularly in visualising 

the distribution and trends of drought within a region. Mirzaee and Mirzakhani Nafchi (2023) also 

noted that spatio-temporal models are highly effective in identifying variations in vegetation indices 

across a region and temporal trends. Details regarding the differences between previous research and 

the current study are presented in Table 2. Based on Table 2, it is evident that several studies have 

utilised satellite imagery to analyse drought using various vegetation indices such as NDVI, NDWI, 

LST, and VHI. Almouctar et al. (2024) and Bashit et al. (2022) combined several indices and validated 

their results with meteorological data; however, they did not apply spatio-temporal modelling or 

directly link the results to impacts on agricultural production. 
Table 2.  

Comparison with Previous Research. 

Researcher Index Spatio-

Temporal 

Approach 

Analysis of 

Impact on 

Rice 

Production 

Validation 

Method 

Description 

Almouctar 

et al., (2024) 

NDVI and 

LST 

No No Correlation 

validation with 

weather data & 

field observations 

Focus on detecting 

vegetative drought 

and soil temperature 

Bashit et al., 

(2022) 

NDVI, 

NDWI, and 

LST 

No No Cross-validation 

with 

meteorological 

data 

Focus on vegetation 

index analysis only 

Wolteji et 

al., (2022) 

NDVI, 

VHI, LST, 

and NDWI 

No No Statistical 

validation against 

historical data 

Utilisation of various 

types of vegetation 

indices but no spatio-

temporal analysis 

Alito & 

Kerebih, 

(2024) 

NDVI, 

LST, VCI, 

TCI 

Yes No Spatio-temporal 

model validation 

with survey data 

Emphasises the 

importance of spatio-

temporal analysis in 

agriculture 

Mirzaee & 

Mirzakhani 

Nafchi, 

(2023) 

NDVI, 

NMDI 

Yes No Temporal trend 

analysis and 

statistical 

validation 

Analysing vegetation 

index trends based on 

spatio-temporal data 

Santhyami, 

et al., (2024) 

Sentinel-

2A-based 

NDDI 

Yes (2017–

2024) 

Yes (Rice 

production in 

the Upper 

Bengawan 

Solo River 

Basin) 

Validation with 

statistical tests 

(correlation, 

regression, and 

non-parametric 

LOWESS 

analysis) 

Combining 

multispectral imagery, 

spatio-temporal 

modelling, and real-

world impacts on 

agricultural 

production 
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Wolteji et al. (2022) employed a more comprehensive combination of indices and statistical 

validation, but the integration of spatio-temporal modelling remained absent. Meanwhile, the studies 

by Alito and Kerebih (2024), as well as Mirzaee and Mirzakhani Nafchi (2023), are notable for their 

use of spatio-temporal modelling to observe drought trends and distribution over time, although 

neither explored the impact of drought on rice production. 

In contrast to these previous studies, the present research integrates a multispectral approach 

using the NDDI with long-term spatio-temporal modelling and directly analyses the impact of drought 

on rice production. This is accomplished using various validation methods, including correlation 

analysis, regression analysis, and non-parametric LOWESS analysis. As such, this study offers a 

novel and comprehensive contribution to the field of drought and food security research. The study 

presents a robust observation-based drought monitoring model that not only delineates the spatial 

distribution and temporal dynamics of drought but also provides empirical evidence of the 

relationship between hydrological drought and declining rice production. The findings of this research 

can serve as a scientific basis for developing drought mitigation strategies and sustainable agricultural 

adaptation planning in drought- and flood-prone areas, such as the Upper Bengawan Solo River Basin. 

2. STUDY AREA  

The study area is the Upper Bengawan Solo Watershed, encompassing seven cities and regencies: 

Surakarta City, and the regencies of Sukoharjo, Boyolali, Klaten, Wonogiri, Karanganyar, and 

Sragen. The total area of the watershed spans 3,773.99 km². Astronomically, it lies between 110º

13'7.16"E and 110º26'57.10"E longitude, and between 7º26'33.15"S and 8º6'13.81"S latitude. The 

detailed location and boundaries of the study area are illustrated in Figure 1.  

According to the Schmidt and Ferguson climate classification, the region falls under the moderate 

climate category, with an average annual rainfall of 119.45 mm in 2024, an average temperature of 

27.4°C, and a mean relative humidity of 76%. The soil types identified in the region include alluvial, 

andosol, complex soils, grumusol, latosol, lithosol, mediterranean, and regosol. Lithosol is the most 

dominant soil type, covering 1,465.3 km², followed by regosol, which spans 951.3 km². 

Land use within the watershed is diverse, comprising residential areas, commercial buildings and 

offices, rice fields, drylands, plantations, vacant land, and water bodies. The topography varies from 

flat and undulating plains to hilly and volcanic terrain. The majority of the area is relatively flat (with 

slopes of 0–<5%), covering 2,506.10 km².  

 
Fig. 1. Administrative Areas of the Upper Bengawan Solo River Basin. 
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Areas with slopes of 10–<30% account for 931.15 km², while the remainder consists of slopes 

between 5–<10% and above 30%. As of 2024, the population of the Upper Bengawan Solo Watershed 

reached 6,883,160, with an average population density of 2,689.29 inhabitants per km² and an annual 

population growth rate of 0.68%. The average sex ratio was recorded at 99.34. In the same year, total 

rice production in the study area amounted to 2,264,832 tonnes. 

3. DATA AND METHODS 

3.1. Sentinel-2A Satellite Imagery 

Sentinel-2A satellite imagery is sourced from the Copernicus Open Access Hub, managed by the 

European Space Agency (ESA). This imagery is multispectral with high spatial resolution and 

encompasses 13 spectral bands, including: Band 1 (Coastal Aerosol), Band 2 (Blue), Band 3 (Green), 

Band 4 (Red), Band 5, 6, and 7 (Vegetation Red Edge), Band 8 (Near Infrared/NIR), Band 8A 

(Vegetation Red Edge), Band 9 (Water Vapour), Band 10 (Short-Wave Infrared/Cirrus), and Bands 

11 and 12 (Short-Wave Infrared/SWIR). The spatial resolution of Sentinel-2A imagery varies by 

band, with resolutions of 10 m, 20 m, and 60 m (European Space Agency, 2025). 

3.2. Image Preprocessing  

Sentinel-2A imagery underwent atmospheric correction using the Sen2Cor Level-2A method, 

followed by geometric correction to align with the local UTM Zone 49S projection system. Annual 

composites were generated using the median composite approach to minimise the impact of residual 

cloud cover. Furthermore, spatial resolution enhancement was applied to the 20-metre bands through 

bilinear interpolation to improve image clarity. 

3.3. Image Processing 

At this stage, the following activities were carried out: atmospheric correction, geometric 

correction, image compositing, and image sharpening. Image processing was performed using a 

Geographic Information System (ArcGIS 10.3). Drought indices including NDVI, NDWI, and NDDI 

were calculated based on spectral band combinations, serving as indicators of vegetation condition 

and water availability. NDVI was employed to assess vegetation health, while NDWI was used to 

detect water content in both soil and vegetation. The NDDI index, combining NDVI and NDWI, 

served as a more integrated indicator of hydrological drought conditions. The specific formulae used 

for calculating each index are presented in Table 3. 

Table 3.  

Formulae for Calculating the NDVI, NDWI, and NDDI. 

Spectral Vegetation Indices Formulae References 

Normalised Difference Vegetation Index 

(NDVI) 

(NIR − Red)

(NIR + Red)
 

(Ren et al., 2023) 

Normalised Difference Water Index 

(NDWI) 

(Green − NIR)

(Green + NIR)
 

(Shashikant et al., 2021) 

Normalised Difference Drought Index 

(NDDI) 

(NDVI − NDWI)

(NDVI + NDWI)
 

(Salas-Martínez et al., 2023) 

 

3.4. NDDI Value Classification 

The NDDI drought classification thresholds were adopted from relevant literature (Salas-

Martínez et al., 2023) and locally adjusted based on the annual histogram distribution to ensure 

accurate representation of local conditions. The drought severity classification in the study area is 

based on NDDI values ranging from -1 to a maximum of 1. In this study, NDDI values are divided 

into five classes: water body, normal condition, mild, moderate, and severe drought. Further details 

are presented in Table 4. 
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Table 4.  

Drought Severity Classification Based on NDDI Values. 

NDDI Value Range Drought Level 

>0.46 Severe 

0.4 – 0.6 Moderate 

0.2 – 0.4 Mild 

0 – 0.2 Normal Condition 

≤ 0 Water Body 

 

3.5. Spatio-Temporal Modelling of Hydrological Drought 

Spatial modelling was conducted by overlaying annual NDDI maps with administrative 

boundaries of districts and cities within the Upper Bengawan Solo River Basin, resulting in a drought 

severity zoning map for each area. Meanwhile, temporal modelling involved analysing annual 

changes in drought index values over the period 2017–2024. This modelling process utilises 

Geographic Information System (GIS) technology, which facilitates the simultaneous integration and 

analysis of spatial and temporal data 

3.6. Model Validation   

Validation of the spatial-temporal model of hydrological drought in this study was performed 

using correlation and regression analyses between drought area, NDDI values, and rainfall. Data on 

drought area and NDDI values were derived from the spatial-temporal modelling results, while 

rainfall data were obtained from the Central Java Provincial Statistics Agency. Three primary 

relationships were analysed: (a) the correlation between drought area and NDDI values, (b) the 

correlation between drought area and rainfall, and (c) the correlation between NDDI values and 

rainfall. The Pearson correlation formulae applied is as follows: 

 

 

 

(1) 

Description:  

r: Pearson correlation coefficient (between -1 and 1) 

xi,yi: Observation values for each variable  

xˉ,yˉ: Average value of variables x and y 

 

Interpretation of r values:  

r>0.7: Indicates a strong relationship 

0.3<r≤0.7: Indicates a moderate relationship 

r≤0.3: Indicates a weak relationship 

 

 

Significance tests were performed to assess whether the observed relationships were statistically 

significant at confidence levels of 95% (p < 0.05) or 99% (p < 0.01). Additionally, simple linear 

regression was utilised to examine the effect of the independent variable (NDDI) on the dependent 

variables (rainfall or drought area). The formulae used is as follows: 

 

Y= α + bX +  (2) 

Description:  

Y: Rainfall (mm/year) and drought area (ha) 

X: NDDI index value  

α: Intercept (Y value when X= 0) 

b: Slope or regression coefficient (average change in Y for every 1 unit 

increase in X) 

: Error or residual (difference between observed and predicted values) 
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3.7. Analysis of Drought Impact on Agricultural Production 

This analysis of the impact of drought on agricultural production employs the Locally Weighted 

Regression (LOWESS) method. The parameters used to assess this impact are NDDI values and rice 

production data. There are several advantages to using this model, including: (a) the relationship 

between NDDI values and rice production is non-linear, so a linear regression approach cannot 

accurately describe the pattern of this relationship; (b) LOWESS is highly flexible because it does not 

assume a specific functional form such as linear or quadratic, but rather adjusts the curve shape based 

on local data; and (c) this method is suitable for small datasets. Mathematically, the formulae for this 

method are as follows: 

 

 

(3) 

Description:  

: Estimated value at point xi 
 

: Weight for data point j relative to xi, calculated based on the distance xj to xi,  

: Actual value at point j  

 

The weight wij, is calculated using the tri-cube kernel function: 

 

 

(4) 

where di s the distance to the n-th point from xi, used as the local neighbourhood range (determined 

by the parameter frac, which represents the percentage of nearest neighbours). 

 

4. RESULTS  

4.1. Spatio-temporal Analysis of Drought within the Study Area 

Spatial and temporal approaches are essential for identifying the distribution and trends of drought 

within the study area. The spatial analysis in this study focuses on classifying drought severity based 

on its spatial distribution (Table 5). Meanwhile, the temporal analysis aims to identify recurring 

drought trends over multiple years (Table 6). This spatial-temporal approach facilitates a more 

detailed examination of drought dynamics and provides valuable insights into the contributing factors 

and their impacts on agricultural productivity. Furthermore, the results of the spatial-temporal drought 

analysis in the Upper Bengawan Solo River Basin are illustrated in Figure 2. 

 
Table 5.  

Drought Area by Region in the Upper Bengawan Solo River Basin. 

No Region Area by Drought Category 

Severe Moderate Mild Normal 

Condition 

Water Body 

1 Boyolali 669,649.90 79,661.80 68,319.90 51,063.20 3,998.20 

2 Klaten 458,779.50 47,182.50 30,484.20 21,311.50 537 

3 Karanganyar 445,737.20 61,256 59,625.20 76,244.80 286.2 

4 Sragen 640,449.70 48,066.90 43,640.30 52,473.60 9,659.40 

5 Wonogiri 1,203,014.20 127,679.70 94,406.80 89,375.40 16,493.90 

6 Sukoharjo 321,648.80 18,956.20 20,489.10 30,918.10 1,005.10 

7 Surakarta 4,604.40 33.9 33.7 0 0 
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Based on Table 5, it is evident that Wonogiri Regency experiences the most extensive severe 

drought, covering an area of 1,203,014.20 hectares, followed by Boyolali, Sragen, Klaten, 

Karanganyar, Sukoharjo, with Surakarta City having the smallest area of 4,604.40 hectares. Similarly, 

in the categories of moderate, mild, and non-drought (normal conditions), Wonogiri Regency 

consistently has the largest area. The distribution of drought severity across the study area corresponds 

closely to its geographical size.  
Table 6.  

Drought Area by Years in the Upper Bengawan Solo River Basin. 

Year 

Area by Drought Category 

Severe (Ha) 
Moderate 

(Ha) 
Mild (Ha) 

Normal 

Condition (Ha) 

Water Bodies 

(Ha) 

2017 492,440.60 42,983.50 32,334.20 33,380.90 2,494.60 

2018 571,438.60 14,025.50 7,176.80 10,690.60 216.7 

2019 184,943.70 1,740.60 267.6 203 15.3 

2020 162,143.60 8,718.20 10,720.50 4,358.20 493.5 

2021 159,050.10 15,177.90 8,738.00 6,485.40 2,017.20 

2022 75,842.50 39,278.30 37,303.50 37,070.50 1,972.50 

2023 176,373.50 6,174.80 3,186.10 4,032.80 1,711.50 

2024 159,050.10 15,177.90 8,738.00 6,485.40 2,017.20 

 

Based on Table 6, the area classified as severely dry fluctuates annually, peaking in 2018 at 

571,438.60 ha, before decreasing significantly to 75,842.50 ha in 2022. The area under normal 

conditions also varies, showing an increase in 2022 (37,070.50 ha) after lower levels in preceding 

years. Additionally, the extent of water bodies changes each year, reaching its highest in 2017 

(2,494.60 ha) and its lowest in 2019 (15.3 ha). A detailed spatial-temporal analysis of hydrological 

drought in the Upper Bengawan Solo River Basin is illustrated in Figure 2. Based on Figure 2, the 

spatial distribution shows that the southeastern part of the watershed, particularly Wonogiri and 

Sragen, consistently experiences severe drought throughout the year. This pattern is closely related to 

the hilly topography, which hinders water drainage, and the lower rainfall in these areas compared to 

the central regions such as Klaten and Sukoharjo.  

4.2. Drought Model Validation 

The validation of the spatial-temporal modelling results of hydrological drought in this study was 

conducted using statistical methods, specifically correlation and regression analyses. The variables 

involved were drought extent, NDDI values, and rainfall (Table 7). Data on drought extent and NDDI 

values were obtained from the spatial-temporal modelling results, while rainfall data were sourced 

from the Central Java Provincial Statistics Agency. Three primary relationships were examined: (a) 

the correlation between drought extent and NDDI values, (b) the correlation between drought extent 

and rainfall, and (c) the correlation between NDDI values and rainfall. The results of the correlation 

analysis are presented in Table 8 and Figure 3, while the regression results are shown in Table 9 and 

Figure 4. Based on Table 7, it can be observed that this study employs three main variables in the 

statistical tests (correlation and regression): the area affected by drought (in hectares), the drought 

index value (NDDI), and the average annual rainfall (mm/year) within the Upper Bengawan Solo 

River Basin (DAS) for the period 2017–2024. These three variables exhibit significant fluctuations 

from year to year. In 2018, the drought-affected area reached its peak, coinciding with a spike in the 

NDDI value. Conversely, 2022 recorded the highest rainfall and the lowest drought extent. The 

patterns identified in this dataset provide a critical foundation for statistical testing, both in terms of 

correlation and regression, to better understand the interrelationship between drought dynamics and 

the climatic factors that influence them. 
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Fig. 2. Spatial-Temporal Map of Drought in the Upper Bengawan Solo River Basin. 

Table 7.  

Statistical Variables: Drought Area, NDDI Value, and Rainfall (2017–2024). 

No Year Drought Area 

(Ha) 

NDDI Value Average Annual Rainfall 

(mm/year) 

1 2017 567,758.30 0.82 65.81 

2 2018 592,640.90 0.91 51.52 

3 2019 186,951.90 0.76 82.04 

4 2020 181,582.30 0.63 71.3 

5 2021 182,966.00 0.64 117.13 

6 2022 152,424.30 0.52 199.36 

7 2023 185,734.40 0.71 165.39 

8 2024 182,966.00 0.64 119.45 
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Table 8.  

Pearson Correlation Results Between Research Variables. 

Relationship Correlation 

Coefficient (r) 

p-value  Interpretation 

Drought Area vs NDDI Value 0.840 0.009 Strong and statistically significant 

(positive) 

Drought Area vs Rainfall -0.633 0.092 Moderate and not statistically 

significant (negative) 

NDDI Value vs Rainfall -0.738 0.037 Strong and statistically significant 

(negative) 

 

 
Fig. 3. Graph of Pearson Correlation Test Results between Research Variables. 

 

The results of the Pearson correlation test indicate a strong and statistically significant positive 

relationship between the drought-affected area and the NDDI value, with a correlation coefficient of 

0.840 and a p-value of 0.009. In contrast, the relationship between drought extent and rainfall shows 

a moderate negative correlation (-0.633), but it is not statistically significant (p-value = 0.092). 

Meanwhile, the correlation between NDDI and rainfall is strong and negative (-0.738) and statistically 

significant, with a p-value of 0.037. These findings reinforce that the NDDI is a relatively sensitive 

indicator in describing drought severity, as it is positively correlated with the expansion of drought-

affected areas and negatively correlated with rainfall. On the other hand, the insignificant relationship 

between rainfall and drought extent suggests that rainfall alone is insufficient to explain the severity 

of drought impacts. Therefore, the use of composite indices such as the NDDI, which incorporate 

aspects of vegetation cover and soil moisture is essential for more comprehensive and accurate 

drought monitoring. 

 
Table 9.  

Simple Linear Regression Results Between Research Variables. 

Relationship Regression Equation R2 p-value Interpretation 

NDDI Value vs 

Rainfall 

Rainfall = -310.05 × NDDI + 

327.20 

0.544 0.037 Significant, moderate 

negative relationship 

Drought Area VS 

NDDI Value 

Drought Area = -2,273.45 × 

Rainfall + 526,934.45 

0.401 0.092 Not significant, weak 

negative relationship 

NDDI Value VS 

Drought Area 

Drought Area = 1,268,283.31 × 

NDDI - 613,426.37 

0.706 0.009 Significant, strong 

positive relationship 
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Fig. 4. Graph of Regression Test Results Between Research Variables. 

 

Based on Table 9 and Figure 4, the relationship between NDDI and rainfall has an R² value of 

0.544 and a p-value of 0.037, indicating a moderate negative relationship that is statistically 

significant. The relationship between rainfall and drought area shows an R² of 0.401 and a p-value of 

0.092, suggesting a weak negative relationship that is not statistically significant. Meanwhile, the 

relationship between NDDI and drought area yields an R² of 0.706 and a p-value of 0.009, reflecting 

a strong and statistically significant positive relationship. 

These findings indicate that NDDI is a fairly reliable indicator for predicting hydrological drought 

conditions, given its strong and significant relationship with the extent of drought. In contrast, rainfall 

does not significantly influence the drought area, which may be due to other factors such as infiltration 

efficiency, irrigation water use, or soil response time to precipitation. The negative relationship 

between NDDI and rainfall further confirms that NDDI values tend to increase when rainfall 

decreases, signaling drought conditions. These results emphasize the importance of using image-

based indices such as NDDI for comprehensive spatial and temporal drought monitoring. 

 

4.3. The Impact of Drought on Agricultural Productivity 

 

The analysis of the impact of modelled drought on agricultural production in this study was 

carried out using the Locally Weighted Regression (LOWESS) method. The parameters used to assess 

this impact were NDDI values and rice production data (Table 10). The complete results of the 

calculations using this method are presented in Table 11 and Figure 5. 
Table 10.  

Statistical Variables: Drought Area, and Rice Production (2017–2024). 

No Year Drought Area (Ha) Rice Production (Tons) 

1 2017 567,758.30 2,265,487 

2 2018 592,640.90 2,353,781 

3 2019 186,951.90 2,310,156 

4 2020 181,582.30 2,439,558 

5 2021 182,966.00 2,196,267 

6 2022 152,424.30 2,422,889 

7 2023 185,734.40 2,219,016 

8 2024 182,966.00 2,264,832 
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Based on Table 10, this study utilises two statistical variables to assess the relationship between 

drought severity and agricultural productivity: the area affected by drought (in hectares) and annual 

rice production (in tonnes) within the Upper Bengawan Solo River Basin from 2017 to 2024. 

Throughout the observation period, both variables exhibit significant year-to-year fluctuations. The 

most extensive drought area was recorded in 2018, yet rice production remained relatively high. 

Conversely, the smallest drought-affected area occurred in 2022, which coincided with the peak in 

rice production. Interestingly, rice yields did not consistently decline during years of more severe 

drought, indicating that the correlation between these variables is not strictly linear. 

 
Table 11.  

Comparison of Actual and Estimated Rice Production Based on LOWESS  

Against NDDI Values (2017–2024). 

No Year NDDI Value 
Rice Production 

(Tonnes) 

Estimated Production (LOWESS), 

(Tonnes) 

1 2017 0.82 2,265,487 2,297,082 

2 2018 0.91 2,353,781 2,345,025 

3 2019 0.76 2,310,156 2,265,821 

4 2020 0.63 2,439,558 2,239,768 

5 2021 0.64 2,196,267 2,237,174 

6 2022 0.52 2,422,889 2,422,889 

7 2023 0.71 2,219,016 2,231,535 

8 2024 0.64 2,264,832 2,237,174 

 

 
Fig. 5. Comparison Graph of Actual and Estimated Rice Production using the LOWESS Method. 

 

Based on Table 11 and Figure 5, the data points show a non-linear distribution. At lower NDDI 

values (approximately 0.52–0.63), rice production is relatively high (2.42–2.44 million tonnes). 

Production then decreases to its lowest point (2.20 million tonnes) at moderate NDDI levels (0.64–

0.71), before increasing again at high NDDI values (0.91), with a production of 2.35 million tonnes. 

The LOWESS curve (red line) follows this pattern: it declines sharply from an NDDI of 0.52 to around 

0.70, then rises again towards an NDDI of 0.91. This pattern indicates a non-linear relationship: rice 

production does not respond monotonically to NDDI values, but instead reaches its lowest point at 

moderate NDDI levels and is relatively higher at both low and high extremes.  
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5. DISCUSSION  

The spatio-temporal model has proven effective in analysing trends and the distribution of 

hydrological drought in the Upper Bengawan Solo River Basin. This approach enables the 

visualisation of drought dynamics both temporally, through annual trend graphs, and spatially, 

through drought distribution maps across districts and cities. Validation results via statistical tests 

indicate a very strong positive correlation between drought-affected areas and the drought index 

(NDDI), with a coefficient (r = 0.84; p < 0.01), suggesting that increases in NDDI are aligned with 

the expansion of drought-affected areas. A significant negative correlation was also found between 

NDDI and annual rainfall (r = -0.73; p < 0.05), indicating that increased rainfall tends to reduce 

drought intensity. Meanwhile, a moderate yet statistically insignificant negative correlation was 

observed between rainfall and drought extent (r = -0.63; p > 0.05), implying that annual rainfall is not 

the sole determining factor. These findings are consistent with previous studies (Arias et al., 2024; 

Bolan et al., 2024; Harini et al., 2022), which have similarly concluded that rainfall is not the primary 

cause of drought. This supports the application of composite indices such as NDDI in more 

comprehensively representing drought conditions. 

The choice of approach and satellite imagery is critical to determining the accuracy of drought 

models. This study employed the NDDI method due to its ability to integrate vegetation information 

(NDVI), soil moisture (NDWI), and water availability, thereby offering more representative drought 

estimates than conventional methods. These findings align with Salas-Martínez et al. (2023), who 

affirmed NDDI’s effectiveness in identifying hydrological drought. Furthermore, the use of 

Sentinel-2A imagery supports detailed monitoring of vegetation and soil moisture owing to its high 

spatial and temporal resolution. This is reinforced by studies by Alonzo et al. (2023) and Staszel et 

al. (2024), which confirm Sentinel-2A as one of the most suitable multispectral datasets for ecological 

and agricultural analysis. Nonetheless, satellite imagery interpretation remains constrained by 

atmospheric disturbances, which may affect data accuracy. 

As a vegetation and drought monitoring tool, NDDI offers advantages by integrating various 

biophysical parameters for rapid and effective identification of hydrological drought. The use of this 

index enables near real-time field condition estimation and provides reliable information for decision-

making. Studies by Del-Toro-Guerrero et al. (2022) and Gelata et al. (2023) also demonstrate that 

NDDI-based spatio-temporal modelling can accurately assess drought conditions in specific regions. 

The effectiveness of this method makes it a key component of early warning systems and risk 

assessments for agriculture and water resources. 

The model developed in this study was also applied to analyse the impact of drought on rice 

production in the study area. The analysis revealed that the relationship between drought extent and 

rice production is non-linear, necessitating the use of non-linear regression approaches (Cahyono et 

al., 2023). The LOWESS regression model was adopted to capture this pattern and showed that in 

several years with severe drought, rice production remained stable or even increased. This suggests 

the presence of other interventions such as efficient irrigation systems, the adoption of drought-

tolerant varieties, and adaptive land management practices. These findings are in line with Del-Toro-

Guerrero et al. (2022), who emphasised the critical role of socio-technical factors in maintaining food 

production resilience under drought stress. 

This study provides a significant contribution to the development of remote sensing-based drought 

monitoring models in Indonesia, particularly for the agricultural sector, which is highly vulnerable to 

climate change. The integration of spatio-temporal modelling, the selection of appropriate vegetation 

indices, and rigorous statistical validation result in an analytical framework that is not only accurate 

but also practical. This model can serve as a foundation for agricultural adaptation planning and 

drought risk mitigation policy, both at local and national levels. 

Future research is recommended to incorporate long-term climatic indices such as the 

Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index 

(SPEI) to enable broader climatological drought analysis. The application of machine learning 

methods also holds the potential to enhance drought prediction accuracy by integrating multiple data 
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sources. Moreover, integration with field data such as actual harvest yields, irrigation conditions, and 

local farming practices is crucial to refining the model and producing more precise policy 

recommendations for addressing climate change challenges in the agricultural sector. 

 

6. CONCLUSIONS 

 

This study successfully mapped the spatial and temporal dynamics of drought in the Upper 

Bengawan Solo River Basin from 2017 to 2024 using the NDDI index derived from Sentinel-2A 

imagery. Wonogiri, Boyolali, and Sragen were identified as the most severely affected areas, while 

urban regions such as Surakarta remained relatively unaffected. This distribution was influenced by 

topographical conditions, low rainfall levels, and the size of the regions. Temporally, drought 

exhibited sharp annual fluctuations, peaking in 2018 and decreasing significantly in 2022. 

The NDDI index demonstrated a strong correlation with both the extent of drought-affected areas 

and rainfall, and it proved to be a more reliable predictor than rainfall alone in the linear regression 

model. This affirms the effectiveness of NDDI as a tool for drought monitoring and early warning 

systems. Furthermore, the LOWESS model used to estimate rice production based on NDDI values 

closely approximated actual yields, despite some limitations in years where NDDI values were 

identical. These findings underscore the potential of remote sensing integration to support food 

security and sustainable drought management. Future research is recommended to incorporate 

additional climatic variables and machine learning approaches to improve the accuracy of drought 

and agricultural yield predictions. 
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