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ABSTRACT 

Forest and land fires in Kalimantan present a recurrent environmental challenge, driven by local and 

global climatic factors. Predicting fire hotspots is crucial for mitigation efforts. This study compares 

the performance of Gaussian Process Regression (GPR) and Long Short-Term Memory (LSTM) 

networks in forecasting monthly fire hotspots based on six climatic indicators, including rainfall, dry 

spells, and ENSO and IOD indices. GPR models were developed using several kernels and 

hyperparameter tuning methods, while LSTM models applied multiple architectural configurations 

combined with regularisation techniques. The results show that while GPR models achieved good 

fitting on training data, they suffered from overfitting and lower accuracy during testing, even after 

optimisation. In contrast, the LSTM model with two LSTM layers and four dense layers demonstrated 

superior predictive performance, achieving a testing RMSE of 522.12 and an Explained Variance Score 

(EVS) of 0.834. LSTM effectively captured complex temporal patterns inherent in climate-driven fire 

hotspot data. Nevertheless, both models faced difficulties in predicting anomalies linked to socio-

economic interventions, such as the significant reduction in fire hotspots in 2018.The findings highlight 

the effectiveness of LSTM in modelling temporally dependent environmental phenomena and suggest 

the need for integrating socio-economic variables into future predictive frameworks to improve 

robustness. This study contributes valuable insights towards enhancing early warning systems for 

forest fire risk management in Kalimantan and other tropical regions. 
 

Keywords: Fire hotspots; Kalimantan; Gaussian Process Regression; Long Short-Term Memory; 

Machine learning. 

 

 

1. INTRODUCTION 

 

Kalimantan, the third largest island in the world with an area of 539,460 km² (MacKinnon & 

Hatta, 2013), frequently draws attention due to recurring environmental issues, notably forest and 

land fires (Sarmiasih & Pratama, 2019; Gusnita, 2021; Qirom et al., 2022; Saharjo & Hasanah, 2023).  

These events occur annually (Saharjo & Velicia, 2018), with major fire episodes recorded in 1982, 

1997–1998, 2015, and 2019 (Najib et al., 2022; Werf et al., 2017). Forest fires have significant 

impacts, including ecosystem destruction, air pollution, public health risks, and economic losses 

estimated at approximately IDR 74 million per hectare (Ulya & Yunardy, 2006; Mulia et al., 2021; 

Sari et al., 2022; Wasis et al., 2019). Early indicators of forest fires can be identified through the 

presence of hotspots, defined as areas experiencing elevated surface temperatures associated with 

burning (Nugrahani et al., 2024; Reddy et al., 2019). 
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Forest fires in Kalimantan are strongly influenced by both local and global climatic conditions. 

Variables such as air temperature, rainfall, and humidity are closely linked to hotspot occurrence 

(Saharjo & Velicia, 2018). Moreover, global climate phenomena such as the El Niño–Southern 

Oscillation (ENSO) and the Indian Ocean Dipole (IOD) play crucial roles in shaping weather and 

climate patterns across Indonesia (Ardiyani et al., 2023; Irwandi et al., 2019; Nurdiati et al., 2022; 

Rafhida et al., 2024). The ENSO phases, El Niño and La Niña, respectively prolong drought periods 

or enhance rainfall intensity, while the IOD influences rainfall distribution across regions (Anggraini 

& Trisakti, 2011; Bramawanto & Abida, 2017; Nurdiati et al., 2024).  

Given the extensive impacts of forest fires, there is an urgent need to accurately predict the 

number of hotspots in Kalimantan. Reliable prediction models not only facilitate the identification of 

high-risk areas but also enable governments and other stakeholders to design effective mitigation 

strategies (Sudrajat & Subekti, 2019; Yuliarti & Anggraini, 2022). Although numerous predictive 

methods have been explored in previous studies, challenges remain in achieving accuracy and 

reliability, particularly when using climate indicators. Techniques such as autoregression (AR), 

artificial neural networks (ANN), support vector regression (SVR), random forest regression, and 

gradient boosting regression often struggle to effectively capture temporal patterns in the data 

(Nugrahani et al., 2024; Nurdiati, Sopaheluwakan, et al., 2022). 

This study builds upon Najib et al. (2022) and (Nugrahani et al., 2024) by analysing a dataset 

consistent with their monthly BMKG hotspot counts on a 0.25° × 0.25° grid across Kalimantan for 

2001–2020 with preprocessing that excludes persistently low-activity grids following Najib et al. 

(2021). Najib et al. (2022) utilised rainfall and dry spell indicators to predict hotspot abundance using 

copula regression, whereas Nugrahani et al. (2022) incorporated rainfall anomalies, as well as IOD 

and ENSO indices, applying various machine learning methods. However, previous research has yet 

to fully leverage these indicators within more sophisticated predictive models, particularly under 

Kalimantan’s dynamic temporal conditions. It was also observed that the previous models exhibited 

significant overfitting, highlighting the need for more robust approaches. 

In this study, two predictive methods are employed to model the number of hotspots based on 

climatic indicators: Gaussian Process Regression (GPR) and Long Short-Term Memory (LSTM) 

networks. GPR is renowned for its capability to model complex relationships between variables, 

particularly in small datasets. It has demonstrated superior predictive performance in various studies, 

often yielding lower fitting errors compared to alternative methods (Kamath et al., 2018). 

Furthermore, GPR has proven effective across applications such as remote sensing and weather data 

analysis (Hultquist et al., 2014; La Fata et al., 2024). According to Foley (2024) GPR is particularly 

advantageous for dealing with incomplete or noisy datasets, offering a probabilistic approach that 

explicitly quantifies prediction uncertainties—making it a promising option for modelling the 

relationship between climate indicators and forest fire hotspots. 

Meanwhile, the LSTM deep learning algorithm has gained popularity in recent years for hotspot 

prediction tasks due to its proficiency in capturing complex temporal dependencies in time-series data 

(DiPietro & Hager, 2019; Kadir et al., 2022; Listia Rosa et al., 2022; Kadir et al., 2023; Luo et al., 

2024; Li et al., 2024; Eaturu & Vadrevu, 2025). LSTM-based ensembles fused with (variance-

weighted) Kalman filtering for environmental time series, supports the choice of LSTM for climate 

temporal signals and highlights the value of robust gap-filling before modelling (Haidu et al., 2025). 

LSTM represents an advancement over conventional Recurrent Neural Networks (RNNs), effectively 

addressing the "vanishing gradient" problem where gradients used to update network weights 

diminish or disappear (Noh, 2021). Research by Kadir et al. (2023) demonstrated that LSTM models 

could accurately predict the quantity and distribution of forest fire hotspots in Indonesia based on 

NASA MODIS datasets, achieving a mean percentage error of 6.94%. However, that study solely 

relied on past hotspot data without incorporating other climatic factors. The present study seeks to 

enhance prediction accuracy by integrating a range of climate indicators. 

Through these two approaches, this research aims to evaluate the effectiveness of GPR and 

LSTM methods in predicting the number of hotspots in Kalimantan based on both local and global 

climate indicators. The study not only focuses on predictive accuracy but also explores the relative 
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strengths and weaknesses of each method. The main contribution of this research lies in providing 

empirical insights into which predictive method is more effective and reliable under the context of 

climate variability and the tropical environmental characteristics of Kalimantan. The findings are 

expected to inform the development of more robust predictive models for wildfire mitigation 

applications. Furthermore, this research contributes to practical policy formulation by offering data-

driven recommendations to prevent and mitigate the impacts of forest fires in Kalimantan and other 

regions with similar environmental profiles. 

 

2. STUDY AREA AND DATASETS 

 

Kalimantan Island (5°S–7.25°N, 108°E–119.75°E), shared by three countries—Indonesia, 

Malaysia, and Brunei Darussalam—has attracted considerable attention in wildfire hotspot research. 

The Indonesian portion of the island comprises five provinces: West Kalimantan, Central Kalimantan, 

South Kalimantan, East Kalimantan, and North Kalimantan. Geographically, Kalimantan is 

characterised by extensive tropical rainforests, vast peatlands, and a humid tropical climate with 

consistently high temperatures and humidity throughout the year. The island accounts for 

approximately 33.8% of Indonesia’s total peatland area, making it an ecologically significant yet 

highly fire-prone region. 

Rainfall patterns across Kalimantan are classified into equatorial and monsoonal types. Areas 

experiencing a monsoonal pattern, particularly in the southern and central regions, are more 

susceptible to wildfires, especially during prolonged dry seasons intensified by El Niño events. 

Research indicates that strong El Niño events can extend the dry season, increase the number of 

consecutive dry days, and subsequently trigger a greater number of wildfire hotspots. Conversely, La 

Niña events, which bring more frequent rainfall, tend to reduce the risk of fires. The positive phase 

of the Indian Ocean Dipole (IOD), when occurring simultaneously with El Niño, can further 

exacerbate drought conditions.  

Hotspot data used in this study were obtained from Indonesian Meteorological, Climatological, 

and Geophysical Agency (BMKG) as a distributor of satellite active-fire detections derived from 

MODIS (MOD14/MYD14) and VIIRS (e.g., VNP14IMG/VJ114IMG) products that implement the 

contextual active-fire detection algorithm. To ensure that the analysis focused on fire-prone areas, 

regions with consistently low hotspot activity, such as highland areas with high rainfall, were 

excluded. This approach follows the classification method proposed by Najib et al. (2021), in which 

Kalimantan’s hotspot grids were clustered using the k-means (Lloyd, squared-Euclidean) on hotspot 

time series evaluating 8 clusters and designating the lowest-incidence cluster as the candidate for 

removal.  

 

 
Fig. 1. (a) Kalimantan Island and selected research areas; (b) Total monthly hotspot counts. 
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Clusters characterised by extremely low fire incidence—with a maximum average of only 3.43 

hotspots per grid point (e.g., in 2002)—were disregarded to avoid distorting the analysis of wildfire 

characteristics in Kalimantan. 

Following Najib et al. (2021), we first excluded 0.25°×0.25° grid cells with persistently low 

hotspot activity using a k-means clustering of grid-level hotspot time series, and retained only high-

incidence grids. This study only includes areas with significant hotspot concentrations, particularly in 

Central, South, and West Kalimantan, as shown in figure 1(a). For each month between 2001 and 

2020, hotspot counts were then summed over all retained grids, yielding a single monthly total hotspot 

count. Analysis was conducted using total monthly hotspot data from 2001 to 2020, illustrated in 

figure 1(b). The trend in hotspot numbers exhibits a clear seasonal cycle, with peaks typically 

occurring mid-year and lower counts during the rest of the year. The number of hotspots tends to 

increase during the dry season, especially between July and September, due to low humidity and 

minimal rainfall. In contrast, during the rainy season, the number of hotspots declines significantly.  

This study employed both local and global climatic factors to predict monthly total hotspot 

counts. Local climatic variables analysed included total rainfall, rainfall anomalies, and the number 

of dry days (defined as days with less than one millimetre of rainfall), extracted from the CMORPH 

dataset available from the National Oceanic and Atmospheric Administration (NOAA). Meanwhile, 

global climatic factors considered were indices related to the ENSO and IOD phenomena, obtained 

from NOAA. As a result, our dataset consists of a univariate target time series of regional hotspot 

totals and a corresponding multivariate time series of six aggregated climatic predictors; both the GPR 

and LSTM models are trained on this aggregated series rather than on individual grid-cell time series. 

Consequently, six independent variables were used in this research, with 80% of the data allocated 

for model training and the remaining 20% for testing. 

Prior to model fitting, each of the six climatic predictor variables was standardised to zero mean 

and unit variance. The standardisation parameters (mean and standard deviation) were estimated 

exclusively from the training period (2001–2016) and then applied unchanged to the held-out test 

period (2017–2020). For the 16-fold cross-validation used in the GPR experiments, standardisation 

was recomputed in each fold by fitting the scaler on the 15 training years and applying it to the left-

out validation year. For the LSTM models, lagged inputs from t–1 to t–12 was generated from these 

standardised predictor series, ensuring that all input windows were derived from features scaled using 

training-only statistics. The target variable, monthly hotspot counts, was retained in its original units 

without normalisation. 

 

3. METHODS 

 

This study employs two machine learning methods to predict the number of hotspots in 

Kalimantan, namely Gaussian Process Regression and Long Short-Term Memory. 

 

3.1. Gaussian Process Regression 

 

Gaussian Process (GP) is a widely used statistical method for data fitting and prediction based 

on machine learning. A GP is a form of stochastic process, defined as a collection of random variables 

𝑌 indexed by an input space 𝑋, where any finite subset of these variables follows a multivariate 

Gaussian distribution (Rasmussen & Williams 2019). Gaussian Process Regression (GPR) is a non-

parametric, Bayesian approach to regression, offering high flexibility in handling non-linear 

relationships between input and output variables. 

A GPR model is fully characterised by a mean function 𝑚(𝐱)  and a covariance function (kernel) 

𝑘(𝐱𝑖, 𝐱𝑗),, defined as follows: 

 

𝑚(𝐱) = 𝔼[𝒀𝒙], (1) 
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𝑘(𝒙𝑖 , 𝒙𝑗) = 𝔼 [(𝒀𝒙𝑖 −𝑚(𝒙𝑖)) (𝒀𝒙𝑗 −𝑚(𝒙𝑗))]. (2) 

 

The only requirement for a valid kernel is that it must produce a positive semi-definite covariance 

matrix for any set of input points. Through this matrix, a Gaussian process can make predictions at 

new points based on information from the training data. 

In the Bayesian regression framework, GPR models the relationship between input 𝐱𝒊 and output 

𝑦𝑖  as: 

𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜖𝑖 , (3) 

 

where 𝜖𝑖 represents Gaussian noise with zero mean and variance 𝜎2. The function 𝑓 over the input 

space is given a multivariate Gaussian prior distribution with zero mean and covariance matrix 𝐊: 

 

𝑓|𝐗, 𝜃 ∼ 𝑁(𝟎, 𝐊). (4) 

 

For prediction, GPR provides a Gaussian distribution for each array of new input variables 𝐗∗ =
[𝐱1
∗ , 𝐱2

∗ , … , 𝐱𝑛
∗ ]. The estimated value for 𝑦∗ is 𝑚(𝐗∗) and the variance of 𝑦∗ is given by cov(X∗). In 

kernel space, the mean and covariance prediction equations are: 

 

𝑚(X∗) = k∗T(K + 𝜎2I)−𝟏𝐲, (5) 

 

cov(X∗) = 𝑘(𝐗∗, 𝐗∗) − k∗T(K + 𝜎2I)−𝟏k∗, (6) 

 

where 𝐤∗ is the covariance vector between the new data X∗ and the training data. 

 

3.1.1. Hyperparameter Tuning 

In machine learning, parameters that are not updated during model training and must be 

configured beforehand are known as hyperparameters. Model performance can vary significantly 

depending on the choice of hyperparameters; hence, careful tuning is crucial. In GPR, the noise level 

𝜎2 is treated as a hyperparameter that can be optimised. Noise level refers to the variation or 

uncertainty in observations, represented as the variance of the added Gaussian noise (Li et al., 2020). 

In this study, tuning of the noise level was conducted using several optimisation methods, following 

(Rasmussen & Williams, 2019), namely maximum marginal likelihood (MML), Bayesian 

optimisation, grid search, and random search. 

 

1. Maximum Marginal Likelihood 

The marginal likelihood function is obtained by integrating the likelihood function multiplied 

by the prior distribution of 𝑓: 

𝑝(𝒚|𝐗, 𝛉) = ∫ 𝑝(𝒚|𝐟, 𝐗, 𝛉)𝑝(𝐟|𝐗, 𝛉) 𝑑𝐟, (7) 

where 𝒚 represents the observed response variable, 𝐗 is the matrix of observed inputs, 𝛉 denotes the 

model parameters, and 𝐟 is the function representing the relationship between 𝐗 and 𝒚. Within the 

Gaussian Process framework, the prior distribution 𝐟|𝐗, 𝛉 is multivariate Gaussian, 𝐟|𝐗, 𝛉~𝑁(𝟎, 𝐊). 
 

2. Bayesian optimization 

Bayesian optimisation relies on a surrogate function to locate the best parameter values (Ye et 

al., 2019). The surrogate function uses a probabilistic model that is updated with new information. It 

works by identifying regions likely to contain the optimum and sampling points close to these regions 

to refine the model. In this context, Gaussian processes are used as surrogate functions for the 

objective function. 

The probability of the objective function is evaluated using an acquisition function (Ye et al., 

2019), commonly the expected improvement (EI), defined as: 
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𝐸𝐼𝑦∗(𝑥) =  ∫ 𝑚𝑎𝑥(𝑦∗ − 𝑦, 0)
∞

−∞
𝑝(𝑦|𝑥, 𝜽)𝑑𝑦, (8) 

 

where 𝑥 is the input, 𝑦∗ is the best observed value, 𝑦 is the model's predicted value, and 𝑝(𝑦|𝑥, 𝜽) is 

the posterior distribution. 

 

3. Grid Search 

Grid search is a hyperparameter search technique that systematically tries all combinations 

within a specified parameter space. It constructs a grid of parameter values and evaluates the model 

performance at each grid point. 

 

4. Random Search 

Random search selects hyperparameter combinations randomly within a defined search space. 

Unlike grid search, it does not exhaustively explore all combinations but samples a predefined 

number of configurations. 

 

3.1.2. Kernel Selection 

As introduced earlier, GPR relies on kernels to make predictions at new points. The kernel 

functions as a covariance function measuring the similarity between two points in input space. The 

choice of an appropriate kernel is crucial as it determines how the model captures patterns in the 

data, especially when the relationship is non-linear. This study employed three kernels: the 

exponential kernel, the squared exponential (Gaussian) kernel, and the Matern 3/2 kernel. In addition, 

we used variations of these kernels with Automatic Relevance Determination (ARD), which 

introduces separate length-scales for each explanatory variable. ARD enhances the model's 

adaptability by allowing each input dimension to have its own scaling parameter (Rasmussen & 

Williams, 2019). The original kernels and their ARD versions are summarised as in table 1. 

 
Table 1. 

 Kernel Used in Study. 

 

Kernel Original ARD 

Exponential 

 
𝜎𝑓
2 exp (−

|𝐱𝒊 − 𝐱𝒋|

𝜎𝑙
) 𝜎𝑓

2 exp

(

 −√∑
(𝐱𝑖𝑚 − 𝐱𝑗𝑚)

2

𝜎𝑙𝑚
2

𝑑

𝑚=1
)

  

Squared 

Exponential 

(Gaussian) 
𝜎𝑓
2exp (−

1

2

|𝐱𝑖 − 𝐱𝑗|
𝟐

𝜎𝑙
2

) 𝜎𝑓
2 exp

(

 −
1

2
√∑

(𝐱𝑖𝑚 − 𝐱𝑗𝑚)
2

𝜎𝑙𝑚
2

𝑑

𝑚=1
)

  

Matern3/2 𝜎𝑓
2 (1 +

√3 

𝜎𝑙
𝑟) exp (−

√3

𝜎𝑙
𝑟) 𝜎𝑓

2 (1 +
√3 

𝜎𝑙
𝑟𝑎𝑟𝑑)exp (−

√3

𝜎𝑙
𝑟𝑎𝑟𝑑) 

 

where: 

• 𝐱𝑖 represents the training data, 

• 𝐱𝑗 denotes the testing data, 

• 𝜎𝑓 is the signal standard deviation, 

• 𝜎𝑙𝑚 is the length-scale parameter for the mmm-th explanatory variable, 

• 𝑑 is the number of explanatory variables, and 

• 𝑟 and 𝑟𝑎𝑟𝑑 represent the Euclidean distance between 𝐱𝑖 and 𝐱𝑗 for standard and ARD kernels, 

respectively. 
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3.2. Long Short-Term Memory (LSTM) 

 

The Long Short-Term Memory (LSTM) model is a type of Recurrent Neural Network (RNN) 

designed for time series data that exhibits dependencies on previous observations. The output from 

prior steps is used to update new weight values. These updated weights are then applied in subsequent 

computations, establishing a connection between new and prior data. 

The LSTM model was specifically designed to overcome the limitations of conventional RNNs, 

which often struggle with long-range dependencies and are prone to the vanishing and exploding 

gradient problems [36]. LSTM represents a specialised architecture within the RNN family. Unlike 

a simple RNN, the hidden units of an LSTM consist of three principal gates: the forget gate, the input 

gate, and the output gate. The mathematical formulations of the forget gate 𝑓(𝑡)(8), input gate 𝑖(𝑡) 

(9), output gate 𝑜(𝑡) (10), candidate cell state 𝐶̃(11), cell state 𝐶 (12), and hidden layer ℎ(𝑡) (13) are 

as follow: 

 

𝒇(𝒕) = 𝜎(𝑾𝒇𝒙𝒕 +𝑾𝒇𝒉
(𝒕−𝟏) + 𝜽𝒇) (9) 

 

𝒊(𝒕) = 𝜎(𝑾𝒊𝒙𝒕 +𝑾𝒊𝒉
(𝒕−𝟏) + 𝜽𝒊) (10) 

 

𝒐(𝒕) = 𝜎(𝑾𝒐𝒙𝒕 +𝑾𝒐𝒉
(𝒕−𝟏) + 𝜽𝒐). (11) 

 

𝑪̃(𝒕) = 𝑡𝑎𝑛ℎ(𝑾𝒄𝒙𝒕 +𝑾𝒄𝒉
(𝒕−𝟏) + 𝜽𝒄) (12) 

 

𝑪(𝒕) = 𝒇(𝒕) ⋅ 𝑪(𝒕−𝟏) + 𝒊(𝒕) ⋅ 𝑪̃(𝒕) (13) 

 

𝒉(𝒕) = 𝒐(𝒕) ⋅ 𝑡𝑎𝑛ℎ (𝑾𝒄𝑪
(𝒕) + 𝜽ℎ) (14) 

 

where 𝑾𝒇,𝑾𝒊,𝑾𝒐 , and 𝑾𝒉 represent the weight matrices for the forget gate, input gate, output gate, 

and hidden layer, respectively. Likewise, 𝜽𝒇, 𝜽𝒊, 𝜽𝒐 and 𝜽𝒉 are the biases associated with each 

corresponding gate. 

The weights and biases in the model must be initialised prior to the training process. Glorot, 

Bengio (2010) introduced the Glorot uniform initialisation method, which sets the initial weights 

based on a uniform distribution. This method is widely adopted for initialising weights in deep 

learning models. By default, the TensorFlow package in the Python programming language applies 

the Glorot uniform method for weight initialisation. The distribution of weights using the Glorot 

uniform method is defined by: 

 

𝑊~𝑈(−
√6

√𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
,

√6

√𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
) (15) 

 

where 𝑛𝑖𝑛 is the number of input units, and 𝑛𝑜𝑢𝑡 is the number of output units. In addition, the biases 

are initialised to zero. 

Each gate utilises either the sigmoid function 𝜎 or the hyperbolic tangent (tanh) function. The 

sigmoid activation outputs values within the interval [0,1], controlling whether information is 

retained or discarded: an output close to 0 implies forgetting, whereas an output close to 1 implies 

retaining the information. An illustration of the LSTM architecture is presented in figure 2. 

In this study, the LSTM model architecture is enhanced with regularisation techniques to 

improve performance and prevent overfitting by early stopping after 25 epochs. Early stopping 

monitors model performance during training and halts the process once the loss function ceases to 

improve after a pre-specified patience value (𝑠 epochs). This method helps prevent the model from 

overtraining and becoming trapped in local minima, thereby mitigating overfitting. 
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Fig. 2. LSTM model architecture. 

 

 

3.3. Model Performance Metrics 

 

To evaluate the performance of the machine learning (ML) model in predicting hotspots on the 

test data, two primary metrics are employed: the Root Mean Squared Error (RMSE) and the 

Explained Variance Score (EVS). 

The RMSE measures the average squared difference between the observed and predicted values 

and is defined as: 

 

RMSE = √
𝟏

𝒏
∑ (𝒚(𝒊) − 𝒚̂(𝒊))𝟐𝒏
𝒊=𝟏 ,  (14) 

 

where 𝒚 denotes the true values and 𝒚̂ represents the predicted values. The RMSE ranges from 

[0,∞) a value of 0 indicating a perfect prediction. A smaller RMSE value implies better predictive 

performance and higher accuracy. 

 

Meanwhile, the EVS measures the proportion of variance in the actual values that is captured 

by the model's predictions. According to Oyedele et al. (2023), the explained variance score is 

defined as: 

 

EVS = 1 −
𝑉𝑎𝑟(𝒚−𝒚̂)

𝑉𝑎𝑟(𝒚)
. (15) 

 

where 𝑉𝑎𝑟(⋅) denotes variance. The EVS ranges from (−∞, 1], with values closer to 1 

indicating that the model explains nearly all of the variability in the data, reflecting excellent 

predictive performance. 
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4. RESULT 

 

This section presents the evaluation results for both training and testing datasets. 

 

4.1. Gaussian Process Regression 

 

4.1.1. Kernel Selection 

Gaussian Process Regression (GPR) was employed to predict fire hotspot occurrences from 

2001 to 2020, based on six climate factors. Numerous kernel functions are available for GPR 

modelling, as they can be combined with other kernels. Consequently, identifying the most 

appropriate kernel function for the model is not straightforward. In this study, several commonly 

used kernels were examined: the Squared Exponential, ARD Squared Exponential, Matern32, and 

ARD Matern32 kernels. 

In the initial stage, the most basic optimisation approach, namely maximal marginal likelihood 

(MML), was used to optimise the hyperparameters for each kernel. The results are presented in table 

2. 
                                                                                                                        Table 2. 

Gaussian Process Regression Optimization Metric Evaluation.  

 

Case 
RMSE 

Train Test 

GPR with Squared Exponential kernel 492.06 1116.9 

GPR with ARD Squared Exponential kernel 501.29 971.27 

GPR with Matern32 kernel 402.48 1133.5 

GPR with ARD Matern32kernel 144.1 1227.3 

 

Based on table 2, the ARD Matern32 kernel exhibited excellent performance on the training 

dataset, achieving a very low RMSE value. However, this high level of accuracy may indicate 

overfitting. This is further confirmed by the significant performance deterioration observed on the 

testing dataset, where the ARD Matern32 kernel produced the worst result compared to other kernels. 

Thus, selecting an appropriate kernel function is crucial, as a good kernel should not only 

achieve high accuracy on the training data but also maintain good performance when predicting new 

data. Based on the consistency of the RMSE values between training and testing, the ARD Squared 

Exponential kernel was identified as the most relevant and robust choice for modelling the number 

of fire hotspots. Its consistent performance helps mitigate overfitting, making it a suitable option for 

this study. 

 

4.1.2. Model Optimisation with Cross-Validation and Hyperparameter Tuning 

While setting initial values and applying MML can optimise the marginal likelihood and 

enhance model accuracy, this approach alone is insufficient to fully address overfitting. To further 

improve the model, hyperparameter tuning was performed. 

Prior to optimisation, a 16-fold cross validation from 16 years train data (2001-2016) technique 

was applied, partitioning the data by year to create 16 annual data groups. In this process, for the first 

fold, the data from 2001 were used for testing and the remaining years for training; for the second 

fold, 2002 data were used for testing, and so on, until each year's data had served as the test set once. 

Hyperparameter tuning was then conducted using three optimisation methods: Bayesian 

optimisation, grid search, and random search. The evaluation results from these methods were 

compared to identify the best-performing model. The hyperparameter targeted for tuning was the 

noise variance (error variance), focusing on a low-complexity optimisation approach by adjusting 

only this single hyperparameter. The results are presented in table 3. 
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                                                                                                                            Table 3. 

Gaussian Process Regression Optimisation Metric Evaluation. 

  

Optimization 
RMSE EVS 

Train Test Train Test 

Bayesian Optimization 700.93 844.47 0.805 0.608 

Grid Search 713.78 853.09 0.798 0.593 

Random Search 694.97 846.58 0.808 0.606 

 

As shown in table 3, Bayesian optimisation achieved the best overall performance. It produced 

a training RMSE of 700.93 and a testing RMSE of 844.47, with corresponding EVS values of 0.805 

and 0.608. These results suggest that Bayesian optimisation provides the best balance between 

training generalisation and the ability to explain data variability, making it a reliable method for 

predicting fire hotspot numbers. 

Random search also demonstrated competitive performance, with the lowest training RMSE 

(694.97) and similar testing performance (RMSE 846.58, EVS 0.606). Grid search, on the other hand, 

showed slightly inferior performance compared to the other two methods. Based on these findings, 

Bayesian optimisation was selected as the most appropriate method for optimising the GPR model 

in this study, with random search as a viable alternative. 

 

4.2. Long Short-Term Memory 

 

Similar to the GPR approach, Long Short-Term Memory (LSTM) was employed to predict fire 

hotspots from 2001 to 2020 using the climate factors described in the dataset section. Using a window 

size of 12 months, the independent variables included all predictor variables from lag t–1 to t–12, 

while the dependent variable was the number of hotspots at time t. The LSTM model was built using 

the parameters outlined in table 4. 
                                                                                                                                         Table 4. 

 LSTM Model Parameter. 

 

PARAMETER SPECIFICATION DESCRIPTION 

Loss function RMSE Experimental 

Optimizer Nadam (Nurdiati, Najib, et al., 2022) 

Learning rate 0.001 Experimental 

Weight initializer Glorot Uniform (Glorot & Bengio, 2010) 

Max epoch 500 (Abbasimehr & Paki, 2022) 

Patience 25 (Terry et al., 2021) 

 

The model architecture comprised combinations of LSTM layers and dense layers. Variations 

included one or two LSTM layers (with many-to-one or many-to-many schemes) and between one 

and four dense layers. The LSTM layers used the tanh and sigmoid activation functions, while the 

dense layers used ReLU activations. 

Training was conducted using backpropagation, with early stopping applied if no improvement 

in testing loss was observed after 25 epochs. To address potential issues arising from poor weight 

initialisation by the Glorot Uniform method, the model was trained 20 times. The evaluation results 

for the LSTM method are shown in table 5. 
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                                                                                                            Table 5. 

LSTM Model Architecture Evaluation. 

 

Architecture 
RMSE EVS 

Train Test Train Test 

1 LSTM 1 Dense 725.02 899.17 0.808 0.521 

1 LSTM 2 Dense 506.05 911.31 0.905 0.495 

1 LSTM 3 Dense 382.48 646.61 0.945 0.746 

1 LSTM 4 Dense 389.97 799.79 0.943 0.620 

2 LSTM 1 Dense 825.82 862.77 0.755 0.544 

2 LSTM 2 Dense 399.06 828.62 0.938 0.580 

2 LSTM 3 Dense 678.61 811.47 0.826 0.613 

2 LSTM 4 Dense 343.01 522.12 0.956 0.834 

 

The evaluation results in table 5 show that the "2 LSTM 4 Dense" architecture achieved the best 

performance among all variations tested. It recorded the lowest RMSE on the testing dataset (522.12) 

and the highest EVS (0.834), indicating excellent accuracy in predicting the number of fire hotspots 

and explaining a substantial portion of data variability. 

Moreover, it demonstrated strong performance on the training dataset (RMSE 343.01, EVS 

0.956), suggesting its capability to capture historical data patterns effectively. Conversely, simpler 

architectures such as "1 LSTM 1 Dense" exhibited significantly lower performance, with a high 

testing RMSE (899.17) and a low EVS (0.521), indicating insufficient ability to capture the 

complexity of the temporal data. Although architectures with more dense layers generally showed 

performance improvements, these results highlight the importance of using additional LSTM layers 

to better capture complex temporal relationships. Thus, the "2 LSTM 4 Dense" architecture was 

identified as the optimal choice for predicting fire hotspot numbers based on climatic factors in this 

study. 

 

4.3. Best Model 

 

The best-performing models identified in the previous sections—GPR with Bayesian 

optimisation and LSTM with a two-layer LSTM and four dense layers architecture—were compared 

against the actual data, as shown in figure 3. 

Figure 3 visualises the comparison between the prediction results of the two models, where (a) 

GPR predictions are shown in red and (b) LSTM predictions in blue, against the actual data. It should 

be noted that the LSTM model utilises lagged inputs; thus, predicting at time t requires data from t-

12 to t-1, which results in no predictions being made for the year 2001. 

It is evident that the LSTM model outperforms GPR in predicting the number of fire hotspots, 

both on training and testing datasets, particularly during spike periods in the dry season. The GPR 

model tends to underestimate the peak number of hotspots during major spike years in the training 

data, notably in 2002, 2004, 2006, 2009, and 2015. In contrast, the LSTM model successfully captures 

these peak events within the training period. 

However, both models demonstrate limitations in predicting peak hotspot numbers within the 

testing data. GPR notably overestimated the number of hotspots in 2018, while LSTM overestimated 

in 2017 and underestimated in 2019, although it performed reasonably well in predicting the hotspot 

count for 2018. Previous research (Gunadi et al., 2019) indicated that the decline in hotspot numbers 

in 2018 was due to efforts aimed at supporting the Asian Games held in Indonesia.  
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Furthermore, study (Nugrahani et al., 2024) reported that four different models tended to 

overestimate hotspot occurrences during that year, consistent with the overestimation observed in the 

GPR model. This discrepancy arises because machine learning models primarily rely on historical 

patterns for predictions and typically do not account for real-world socioeconomic factors. 

Nevertheless, the LSTM model, by incorporating temporal lags, appears to capture patterns more 

closely related to recent data preceding the prediction period. 

 

 
 

Fig. 3. Prediction comparison between GPR and LSTM.  

 

 

5. DISCUSSION 

 

The comparative analysis between Gaussian Process Regression (GPR) and Long Short-Term 

Memory (LSTM) models in this study reveals insightful findings on the challenges and strengths of 

each method when applied to the prediction of forest fire hotspots in Kalimantan using climate factors. 

Notably, the LSTM architecture with two LSTM layers and four dense layers produced the most 

accurate results, achieving a testing RMSE of 522.12 and an EVS of 0.834. This performance 

highlights LSTM’s superior ability to capture complex temporal dependencies, especially in climate-

driven phenomena that are seasonal and nonlinear. 

This finding supports Kadir et al. (2023), who also found LSTM effective for hotspot forecasting 

in Indonesia, achieving an average error of only 6.94% even when using simpler models based solely 

on past hotspot counts. The present study builds upon that by integrating six climate predictors—

including rainfall, dry spells, ENSO, and IOD—thus expanding the model's explanatory power. The 

enhanced accuracy confirms that including relevant climate variables strengthens LSTM’s 

generalization, especially when paired with effective regularization techniques such as dropout and 

early stopping. 
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In contrast, GPR demonstrated solid performance during training but experienced a notable 

decline in accuracy on test data, particularly when complex kernels like ARD Matern32 were used. 

This suggests an overfitting issue, a phenomenon also discussed by Kamath et al. (2018), who found 

GPR highly accurate but sensitive to hyperparameter settings and prone to overfitting in high-

complexity domains. Although GPR showed some generalization improvement with Bayesian 

optimization, its testing RMSE (844.47) and EVS (0.608) remained well below that of the best-

performing LSTM model. 

Similar concerns were raised in Hultquist et al. (2014), where GPR was outperformed by 

Random Forests in predicting burn severity due to its relative inflexibility with noisy and high-

dimensional remote sensing data. These findings collectively suggest that while GPR has strong 

theoretical appeal—especially with its uncertainty quantification and Bayesian foundation—it may 

fall short in real-world applications involving dynamic temporal and multivariate data like wildfire 

hotspot prediction. 

Luo et al. (2024) further validate the LSTM architecture’s strength, demonstrating its capacity 

to forecast methane emissions with high fidelity in multivariate time series scenarios. Their findings 

align with this study’s conclusion that LSTM can effectively model complex environmental systems 

where variables are interdependent and evolve over time. The success of deeper architectures (e.g., 2 

LSTM + 4 dense layers) indicates that the model’s depth and capacity play a crucial role in capturing 

spatiotemporal nuances in climate data. 

However, one consistent limitation across studies—including this one—is the inability to predict 

sociopolitical anomalies, such as the significant decrease in hotspots in 2018 due to government 

efforts to reduce fires during the Asian Games. Gunadi et al. (2019) highlight the critical role of policy 

in shaping fire outcomes, suggesting that models based purely on environmental predictors will 

struggle to account for such interventions. This was evident when GPR overestimated and LSTM 

underestimated fire counts for certain years—both reflecting the models' reliance on historical 

climatic patterns without sociopolitical context. The example of South Africa (Madondo et al., 2023), 

regionally different, but it supports the claim that socio-economic and governance interventions can 

create anomalies versus climate-only predictors. 

In conclusion, the study underscores the potential of LSTM for operational forest fire 

forecasting, especially when enriched with relevant climatic inputs. Meanwhile, GPR remains 

valuable for theoretical modeling and applications requiring probabilistic interpretation. Future 

research should explore hybrid modeling approaches that combine the temporal learning strengths of 

LSTM with the uncertainty quantification of GPR, while also integrating socioeconomic variables to 

capture the full spectrum of fire dynamics in Kalimantan and similar fire-prone regions.  

 

 

6. CONCLUSION 

 

This study successfully demonstrated that both Gaussian Process Regression (GPR) and Long 

Short-Term Memory (LSTM) models can be employed to predict the number of fire hotspots in 

Kalimantan based on climate factors. Through model development and evaluation, the LSTM model 

with two LSTM layers and four dense layers achieved superior performance, with a testing RMSE of 

522.12 and an EVS of 0.834, indicating a strong capability to capture temporal patterns in climate 

and fire data. The GPR model, although effective with Bayesian optimization, was less capable of 

handling the complex temporal dependencies compared to LSTM. The research underscores the 

importance of selecting models that can adapt to the temporal dynamics inherent in climate-induced 

fire risks. Future studies may explore integrating socio-economic variables and higher-resolution 

climate forecasts to further enhance the predictive performance and operational applicability of fire 

hotspot prediction models in Kalimantan and similar tropical regions. 
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