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ABSTRACT

Forest and land fires in Kalimantan present a recurrent environmental challenge, driven by local and
global climatic factors. Predicting fire hotspots is crucial for mitigation efforts. This study compares
the performance of Gaussian Process Regression (GPR) and Long Short-Term Memory (LSTM)
networks in forecasting monthly fire hotspots based on six climatic indicators, including rainfall, dry
spells, and ENSO and IOD indices. GPR models were developed using several kernels and
hyperparameter tuning methods, while LSTM models applied multiple architectural configurations
combined with regularisation techniques. The results show that while GPR models achieved good
fitting on training data, they suffered from overfitting and lower accuracy during testing, even after
optimisation. In contrast, the LSTM model with two LSTM layers and four dense layers demonstrated
superior predictive performance, achieving a testing RMSE of 522.12 and an Explained Variance Score
(EVS) 0f 0.834. LSTM effectively captured complex temporal patterns inherent in climate-driven fire
hotspot data. Nevertheless, both models faced difficulties in predicting anomalies linked to socio-
economic interventions, such as the significant reduction in fire hotspots in 2018.The findings highlight
the effectiveness of LSTM in modelling temporally dependent environmental phenomena and suggest
the need for integrating socio-economic variables into future predictive frameworks to improve
robustness. This study contributes valuable insights towards enhancing early warning systems for
forest fire risk management in Kalimantan and other tropical regions.

Keywords: Fire hotspots; Kalimantan; Gaussian Process Regression; Long Short-Term Memory,
Machine learning.

1. INTRODUCTION

Kalimantan, the third largest island in the world with an area of 539,460 km? (MacKinnon &
Hatta, 2013), frequently draws attention due to recurring environmental issues, notably forest and
land fires (Sarmiasih & Pratama, 2019; Gusnita, 2021; Qirom et al., 2022; Saharjo & Hasanah, 2023).
These events occur annually (Saharjo & Velicia, 2018), with major fire episodes recorded in 1982,
1997-1998, 2015, and 2019 (Najib et al., 2022; Werf et al., 2017). Forest fires have significant
impacts, including ecosystem destruction, air pollution, public health risks, and economic losses
estimated at approximately IDR 74 million per hectare (Ulya & Yunardy, 2006; Mulia et al., 2021;
Sari et al., 2022; Wasis et al., 2019). Early indicators of forest fires can be identified through the
presence of hotspots, defined as areas experiencing elevated surface temperatures associated with
burning (Nugrahani et al., 2024; Reddy et al., 2019).
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Forest fires in Kalimantan are strongly influenced by both local and global climatic conditions.
Variables such as air temperature, rainfall, and humidity are closely linked to hotspot occurrence
(Saharjo & Velicia, 2018). Moreover, global climate phenomena such as the El Nifio-Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD) play crucial roles in shaping weather and
climate patterns across Indonesia (Ardiyani et al., 2023; Irwandi et al., 2019; Nurdiati et al., 2022;
Rafhida et al., 2024). The ENSO phases, El Nifio and La Nifa, respectively prolong drought periods
or enhance rainfall intensity, while the IOD influences rainfall distribution across regions (Anggraini
& Trisakti, 2011; Bramawanto & Abida, 2017; Nurdiati et al., 2024).

Given the extensive impacts of forest fires, there is an urgent need to accurately predict the
number of hotspots in Kalimantan. Reliable prediction models not only facilitate the identification of
high-risk areas but also enable governments and other stakeholders to design effective mitigation
strategies (Sudrajat & Subekti, 2019; Yuliarti & Anggraini, 2022). Although numerous predictive
methods have been explored in previous studies, challenges remain in achieving accuracy and
reliability, particularly when using climate indicators. Techniques such as autoregression (AR),
artificial neural networks (ANN), support vector regression (SVR), random forest regression, and
gradient boosting regression often struggle to effectively capture temporal patterns in the data
(Nugrahani et al., 2024; Nurdiati, Sopaheluwakan, et al., 2022).

This study builds upon Najib et al. (2022) and (Nugrahani et al., 2024) by analysing a dataset
consistent with their monthly BMKG hotspot counts on a 0.25° x 0.25° grid across Kalimantan for
2001-2020 with preprocessing that excludes persistently low-activity grids following Najib et al.
(2021). Najib et al. (2022) utilised rainfall and dry spell indicators to predict hotspot abundance using
copula regression, whereas Nugrahani et al. (2022) incorporated rainfall anomalies, as well as IOD
and ENSO indices, applying various machine learning methods. However, previous research has yet
to fully leverage these indicators within more sophisticated predictive models, particularly under
Kalimantan’s dynamic temporal conditions. It was also observed that the previous models exhibited
significant overfitting, highlighting the need for more robust approaches.

In this study, two predictive methods are employed to model the number of hotspots based on
climatic indicators: Gaussian Process Regression (GPR) and Long Short-Term Memory (LSTM)
networks. GPR is renowned for its capability to model complex relationships between variables,
particularly in small datasets. It has demonstrated superior predictive performance in various studies,
often yielding lower fitting errors compared to alternative methods (Kamath et al., 2018).
Furthermore, GPR has proven effective across applications such as remote sensing and weather data
analysis (Hultquist et al., 2014; La Fata et al., 2024). According to Foley (2024) GPR is particularly
advantageous for dealing with incomplete or noisy datasets, offering a probabilistic approach that
explicitly quantifies prediction uncertainties—making it a promising option for modelling the
relationship between climate indicators and forest fire hotspots.

Meanwhile, the LSTM deep learning algorithm has gained popularity in recent years for hotspot
prediction tasks due to its proficiency in capturing complex temporal dependencies in time-series data
(DiPietro & Hager, 2019; Kadir et al., 2022; Listia Rosa et al., 2022; Kadir et al., 2023; Luo et al.,
2024; Li et al., 2024; Eaturu & Vadrevu, 2025). LSTM-based ensembles fused with (variance-
weighted) Kalman filtering for environmental time series, supports the choice of LSTM for climate
temporal signals and highlights the value of robust gap-filling before modelling (Haidu et al., 2025).
LSTM represents an advancement over conventional Recurrent Neural Networks (RNNs), effectively
addressing the "vanishing gradient" problem where gradients used to update network weights
diminish or disappear (Noh, 2021). Research by Kadir et al. (2023) demonstrated that LSTM models
could accurately predict the quantity and distribution of forest fire hotspots in Indonesia based on
NASA MODIS datasets, achieving a mean percentage error of 6.94%. However, that study solely
relied on past hotspot data without incorporating other climatic factors. The present study seeks to
enhance prediction accuracy by integrating a range of climate indicators.

Through these two approaches, this research aims to evaluate the effectiveness of GPR and
LSTM methods in predicting the number of hotspots in Kalimantan based on both local and global
climate indicators. The study not only focuses on predictive accuracy but also explores the relative
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strengths and weaknesses of each method. The main contribution of this research lies in providing
empirical insights into which predictive method is more effective and reliable under the context of
climate variability and the tropical environmental characteristics of Kalimantan. The findings are
expected to inform the development of more robust predictive models for wildfire mitigation
applications. Furthermore, this research contributes to practical policy formulation by offering data-
driven recommendations to prevent and mitigate the impacts of forest fires in Kalimantan and other
regions with similar environmental profiles.

2. STUDY AREA AND DATASETS

Kalimantan Island (5°S—7.25°N, 108°E-119.75°E), shared by three countries—Indonesia,
Malaysia, and Brunei Darussalam—has attracted considerable attention in wildfire hotspot research.
The Indonesian portion of the island comprises five provinces: West Kalimantan, Central Kalimantan,
South Kalimantan, East Kalimantan, and North Kalimantan. Geographically, Kalimantan is
characterised by extensive tropical rainforests, vast peatlands, and a humid tropical climate with
consistently high temperatures and humidity throughout the year. The island accounts for
approximately 33.8% of Indonesia’s total peatland area, making it an ecologically significant yet
highly fire-prone region.

Rainfall patterns across Kalimantan are classified into equatorial and monsoonal types. Areas
experiencing a monsoonal pattern, particularly in the southern and central regions, are more
susceptible to wildfires, especially during prolonged dry seasons intensified by El Nifio events.
Research indicates that strong El Niflo events can extend the dry season, increase the number of
consecutive dry days, and subsequently trigger a greater number of wildfire hotspots. Conversely, La
Nifla events, which bring more frequent rainfall, tend to reduce the risk of fires. The positive phase
of the Indian Ocean Dipole (IOD), when occurring simultaneously with El Nifio, can further
exacerbate drought conditions.

Hotspot data used in this study were obtained from Indonesian Meteorological, Climatological,
and Geophysical Agency (BMKG) as a distributor of satellite active-fire detections derived from
MODIS (MOD14/MYD14) and VIIRS (e.g., VNP14IMG/VJ114IMG) products that implement the
contextual active-fire detection algorithm. To ensure that the analysis focused on fire-prone areas,
regions with consistently low hotspot activity, such as highland areas with high rainfall, were
excluded. This approach follows the classification method proposed by Najib et al. (2021), in which
Kalimantan’s hotspot grids were clustered using the k-means (Lloyd, squared-Euclidean) on hotspot
time series evaluating 8 clusters and designating the lowest-incidence cluster as the candidate for
removal.
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Fig. 1. (a) Kalimantan Island and selected research areas; (b) Total monthly hotspot counts.
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Clusters characterised by extremely low fire incidence—with a maximum average of only 3.43
hotspots per grid point (e.g., in 2002)—were disregarded to avoid distorting the analysis of wildfire
characteristics in Kalimantan.

Following Najib et al. (2021), we first excluded 0.25°x0.25° grid cells with persistently low
hotspot activity using a k-means clustering of grid-level hotspot time series, and retained only high-
incidence grids. This study only includes areas with significant hotspot concentrations, particularly in
Central, South, and West Kalimantan, as shown in figure 1(a). For each month between 2001 and
2020, hotspot counts were then summed over all retained grids, yielding a single monthly total hotspot
count. Analysis was conducted using total monthly hotspot data from 2001 to 2020, illustrated in
figure 1(b). The trend in hotspot numbers exhibits a clear seasonal cycle, with peaks typically
occurring mid-year and lower counts during the rest of the year. The number of hotspots tends to
increase during the dry season, especially between July and September, due to low humidity and
minimal rainfall. In contrast, during the rainy season, the number of hotspots declines significantly.

This study employed both local and global climatic factors to predict monthly total hotspot
counts. Local climatic variables analysed included total rainfall, rainfall anomalies, and the number
of dry days (defined as days with less than one millimetre of rainfall), extracted from the CMORPH
dataset available from the National Oceanic and Atmospheric Administration (NOAA). Meanwhile,
global climatic factors considered were indices related to the ENSO and 10D phenomena, obtained
from NOAA. As a result, our dataset consists of a univariate target time series of regional hotspot
totals and a corresponding multivariate time series of six aggregated climatic predictors; both the GPR
and LSTM models are trained on this aggregated series rather than on individual grid-cell time series.
Consequently, six independent variables were used in this research, with 80% of the data allocated
for model training and the remaining 20% for testing.

Prior to model fitting, each of the six climatic predictor variables was standardised to zero mean
and unit variance. The standardisation parameters (mean and standard deviation) were estimated
exclusively from the training period (2001-2016) and then applied unchanged to the held-out test
period (2017-2020). For the 16-fold cross-validation used in the GPR experiments, standardisation
was recomputed in each fold by fitting the scaler on the 15 training years and applying it to the left-
out validation year. For the LSTM models, lagged inputs from t—1 to t—12 was generated from these
standardised predictor series, ensuring that all input windows were derived from features scaled using
training-only statistics. The target variable, monthly hotspot counts, was retained in its original units
without normalisation.

3. METHODS

This study employs two machine learning methods to predict the number of hotspots in
Kalimantan, namely Gaussian Process Regression and Long Short-Term Memory.

3.1. Gaussian Process Regression

Gaussian Process (GP) is a widely used statistical method for data fitting and prediction based
on machine learning. A GP is a form of stochastic process, defined as a collection of random variables
Y indexed by an input space X, where any finite subset of these variables follows a multivariate
Gaussian distribution (Rasmussen & Williams 2019). Gaussian Process Regression (GPR) is a non-
parametric, Bayesian approach to regression, offering high flexibility in handling non-linear
relationships between input and output variables.

A GPR model is fully characterised by a mean function m(x) and a covariance function (kernel)
k(x;,x;),, defined as follows:

m(x) = E[Y,], ()
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k(x;,x;) =E [(Yxl. - m(xl-)) (ij —m(x; )] )

The only requirement for a valid kernel is that it must produce a positive semi-definite covariance
matrix for any set of input points. Through this matrix, a Gaussian process can make predictions at
new points based on information from the training data.

In the Bayesian regression framework, GPR models the relationship between input x; and output
Y; as:

yi=f(x) +e€, 3)

where €; represents Gaussian noise with zero mean and variance o2. The function f over the input
space is given a multivariate Gaussian prior distribution with zero mean and covariance matrix K:

f1X,60 ~ N(0,K). “)

For prediction, GPR provides a Gaussian distribution for each array of new input variables X* =
[X},X3, ..., X5 ]. The estimated value for y* is m(X*) and the variance of y* is given by cov(X").In
kernel space, the mean and covariance prediction equations are:

m(X") =k T(K + 02Dy, )
cov(X*) = k(X*,X*) — KT(K + o2I)7k", (6)
where K* is the covariance vector between the new data X* and the training data.

3.1.1.  Hyperparameter Tuning

In machine learning, parameters that are not updated during model training and must be
configured beforehand are known as hyperparameters. Model performance can vary significantly
depending on the choice of hyperparameters; hence, careful tuning is crucial. In GPR, the noise level
0? is treated as a hyperparameter that can be optimised. Noise level refers to the variation or
uncertainty in observations, represented as the variance of the added Gaussian noise (Li et al., 2020).
In this study, tuning of the noise level was conducted using several optimisation methods, following
(Rasmussen & Williams, 2019), namely maximum marginal likelilhood (MML), Bayesian

optimisation, grid search, and random search.

1. Maximum Marginal Likelihood
The marginal likelihood function is obtained by integrating the likelihood function multiplied
by the prior distribution of f:

r(¥IX,8) = [ p(yIf, X, 0)p(f|X, 0) df, (7)

where y represents the observed response variable, X is the matrix of observed inputs, 8 denotes the
model parameters, and f is the function representing the relationship between X and y. Within the
Gaussian Process framework, the prior distribution f|X, 0 is multivariate Gaussian, f|X, 8~N (0, K).

2. Bayesian optimization

Bayesian optimisation relies on a surrogate function to locate the best parameter values (Ye et
al., 2019). The surrogate function uses a probabilistic model that is updated with new information. It
works by identifying regions likely to contain the optimum and sampling points close to these regions
to refine the model. In this context, Gaussian processes are used as surrogate functions for the
objective function.

The probability of the objective function is evaluated using an acquisition function (Ye et al.,
2019), commonly the expected improvement (EI), defined as:
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EL+(x) = [* max(y* —y,0)p(ylx,0)dy, (8)

where x is the input, y* is the best observed value, y is the model's predicted value, and p(y|x, 8) is
the posterior distribution.

3. Grid Search

Grid search is a hyperparameter search technique that systematically tries all combinations
within a specified parameter space. It constructs a grid of parameter values and evaluates the model
performance at each grid point.

4. Random Search

Random search selects hyperparameter combinations randomly within a defined search space.
Unlike grid search, it does not exhaustively explore all combinations but samples a predefined
number of configurations.

3.1.2. Kernel Selection

As introduced earlier, GPR relies on kernels to make predictions at new points. The kernel
functions as a covariance function measuring the similarity between two points in input space. The
choice of an appropriate kernel is crucial as it determines how the model captures patterns in the
data, especially when the relationship is non-linear. This study employed three kernels: the
exponential kernel, the squared exponential (Gaussian) kernel, and the Matern 3/2 kernel. In addition,
we used variations of these kernels with Automatic Relevance Determination (ARD), which
introduces separate length-scales for each explanatory variable. ARD enhances the model's
adaptability by allowing each input dimension to have its own scaling parameter (Rasmussen &
Williams, 2019). The original kernels and their ARD versions are summarised as in table 1.

Table 1.
Kernel Used in Study.
Kernel Original ARD
E tial X; — Xj
Xponentia sz exp <_ | lol ]l) CTfZ exp| —
Squared. , 1x; — lez , 1
Exponential orexp| —s——5— greexp| —5
. 2 g 2
(Gaussian)
V3 V3 V3 V3
Matern3/2 afz (1 +—r)exp| ——r afz 14+—714alexp | ——Tara
4 01 0y 0y

where:
e  X; represents the training data,
e  X; denotes the testing data,
e oy is the signal standard deviation,
® 0y, is the length-scale parameter for the mmm-th explanatory variable,
e d is the number of explanatory variables, and
e rand 1,4 represent the Euclidean distance between X; and X; for standard and ARD kernels,
respectively.



41

3.2. Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) model is a type of Recurrent Neural Network (RNN)
designed for time series data that exhibits dependencies on previous observations. The output from
prior steps is used to update new weight values. These updated weights are then applied in subsequent
computations, establishing a connection between new and prior data.

The LSTM model was specifically designed to overcome the limitations of conventional RNNs,
which often struggle with long-range dependencies and are prone to the vanishing and exploding
gradient problems [36]. LSTM represents a specialised architecture within the RNN family. Unlike
a simple RNN, the hidden units of an LSTM consist of three principal gates: the forget gate, the input
gate, and the output gate. The mathematical formulations of the forget gate f(8), input gate i®
(9), output gate o® (10), candidate cell state C(11), cell state C (12), and hidden layer h® (13) are
as follow:

fO =oWex,+ Wh"D +0)) ©9)
i®=oW;x, + W,V 10, (10)
0® =g(W,x, + W,h&V +0,). (11)
€O = tanh(W x, + W,V 1+ 0,) (12)
CO = fO . ct-1 4 j©® . TO (13)
h® =0® - tanh (W.C® + 80),) (14)

where Wy, W;, W, , and W, represent the weight matrices for the forget gate, input gate, output gate,
and hidden layer, respectively. Likewise, 8, 0;,0, and 6}, are the biases associated with each
corresponding gate.

The weights and biases in the model must be initialised prior to the training process. Glorot,
Bengio (2010) introduced the Glorot uniform initialisation method, which sets the initial weights
based on a uniform distribution. This method is widely adopted for initialising weights in deep
learning models. By default, the TensorFlow package in the Python programming language applies
the Glorot uniform method for weight initialisation. The distribution of weights using the Glorot
uniform method is defined by:

V6 V6

)
ntNout \/nin+nout

(15)

W~U(- Jni

where n;, is the number of input units, and n,,,; is the number of output units. In addition, the biases
are initialised to zero.

Each gate utilises either the sigmoid function o or the hyperbolic tangent (tanh) function. The
sigmoid activation outputs values within the interval [0,1], controlling whether information is
retained or discarded: an output close to 0 implies forgetting, whereas an output close to 1 implies
retaining the information. An illustration of the LSTM architecture is presented in figure 2.

In this study, the LSTM model architecture is enhanced with regularisation techniques to
improve performance and prevent overfitting by early stopping after 25 epochs. Early stopping
monitors model performance during training and halts the process once the loss function ceases to
improve after a pre-specified patience value (s epochs). This method helps prevent the model from
overtraining and becoming trapped in local minima, thereby mitigating overfitting.
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Fig. 2. LSTM model architecture.

3.3. Model Performance Metrics

To evaluate the performance of the machine learning (ML) model in predicting hotspots on the
test data, two primary metrics are employed: the Root Mean Squared Error (RMSE) and the
Explained Variance Score (EVS).

The RMSE measures the average squared difference between the observed and predicted values
and is defined as:

RMSE = \/%Zr;:l(y(i) _y)2, i

where y denotes the true values and y represents the predicted values. The RMSE ranges from
[0, 00) a value of 0 indicating a perfect prediction. A smaller RMSE value implies better predictive
performance and higher accuracy.

Meanwhile, the EVS measures the proportion of variance in the actual values that is captured
by the model's predictions. According to Oyedele et al. (2023), the explained variance score is
defined as:

_ 4 _Var(y-3)
EVS=1 VarGy) - (15)

where Var(:) denotes variance. The EVS ranges from (—oo,1], with values closer to 1
indicating that the model explains nearly all of the variability in the data, reflecting excellent
predictive performance.
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4. RESULT
This section presents the evaluation results for both training and testing datasets.
4.1. Gaussian Process Regression

4.1.1. Kernel Selection

Gaussian Process Regression (GPR) was employed to predict fire hotspot occurrences from
2001 to 2020, based on six climate factors. Numerous kernel functions are available for GPR
modelling, as they can be combined with other kernels. Consequently, identifying the most
appropriate kernel function for the model is not straightforward. In this study, several commonly
used kernels were examined: the Squared Exponential, ARD Squared Exponential, Matern32, and
ARD Matern32 kernels.

In the initial stage, the most basic optimisation approach, namely maximal marginal likelihood
(MML), was used to optimise the hyperparameters for each kernel. The results are presented in table
2.

Table 2.
Gaussian Process Regression Optimization Metric Evaluation.

RMSE
Case
Train Test
GPR with Squared Exponential kernel 492.06 1116.9
GPR with ARD Squared Exponential kernel 501.29 971.27
GPR with Matern32 kernel 402.48 1133.5
GPR with ARD Matern32kernel 144.1 12273

Based on table 2, the ARD Matern32 kernel exhibited excellent performance on the training
dataset, achieving a very low RMSE value. However, this high level of accuracy may indicate
overfitting. This is further confirmed by the significant performance deterioration observed on the
testing dataset, where the ARD Matern32 kernel produced the worst result compared to other kernels.

Thus, selecting an appropriate kernel function is crucial, as a good kernel should not only
achieve high accuracy on the training data but also maintain good performance when predicting new
data. Based on the consistency of the RMSE values between training and testing, the ARD Squared
Exponential kernel was identified as the most relevant and robust choice for modelling the number
of fire hotspots. Its consistent performance helps mitigate overfitting, making it a suitable option for
this study.

4.1.2.  Model Optimisation with Cross-Validation and Hyperparameter Tuning

While setting initial values and applying MML can optimise the marginal likelihood and
enhance model accuracy, this approach alone is insufficient to fully address overfitting. To further
improve the model, hyperparameter tuning was performed.

Prior to optimisation, a 16-fold cross validation from 16 years train data (2001-2016) technique
was applied, partitioning the data by year to create 16 annual data groups. In this process, for the first
fold, the data from 2001 were used for testing and the remaining years for training; for the second
fold, 2002 data were used for testing, and so on, until each year's data had served as the test set once.

Hyperparameter tuning was then conducted using three optimisation methods: Bayesian
optimisation, grid search, and random search. The evaluation results from these methods were
compared to identify the best-performing model. The hyperparameter targeted for tuning was the
noise variance (error variance), focusing on a low-complexity optimisation approach by adjusting
only this single hyperparameter. The results are presented in table 3.
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Table 3.
Gaussian Process Regression Optimisation Metric Evaluation.
. RMSE EVS

Optimization

Train Test Train Test

Bayesian Optimization 700.93 844.47 0.805 0.608

Grid Search 713.78 853.09 0.798 0.593

Random Search 694.97 846.58 0.808 0.606

As shown in table 3, Bayesian optimisation achieved the best overall performance. It produced
a training RMSE of 700.93 and a testing RMSE of 844.47, with corresponding EVS values of 0.805
and 0.608. These results suggest that Bayesian optimisation provides the best balance between
training generalisation and the ability to explain data variability, making it a reliable method for
predicting fire hotspot numbers.

Random search also demonstrated competitive performance, with the lowest training RMSE
(694.97) and similar testing performance (RMSE 846.58, EVS 0.606). Grid search, on the other hand,
showed slightly inferior performance compared to the other two methods. Based on these findings,
Bayesian optimisation was selected as the most appropriate method for optimising the GPR model
in this study, with random search as a viable alternative.

4.2. Long Short-Term Memory

Similar to the GPR approach, Long Short-Term Memory (LSTM) was employed to predict fire
hotspots from 2001 to 2020 using the climate factors described in the dataset section. Using a window
size of 12 months, the independent variables included all predictor variables from lag t—1 to t—12,
while the dependent variable was the number of hotspots at time t. The LSTM model was built using
the parameters outlined in table 4.

Table 4.
LSTM Model Parameter.
PARAMETER SPECIFICATION DESCRIPTION
Loss function RMSE Experimental
Optimizer Nadam (Nurdiati, Najib, et al., 2022)
Learning rate 0.001 Experimental

Weight initializer Glorot Uniform (Glorot & Bengio, 2010)
Max epoch 500 (Abbasimehr & Paki, 2022)
Patience 25 (Terry et al., 2021)

The model architecture comprised combinations of LSTM layers and dense layers. Variations

included one or two LSTM layers (with many-to-one or many-to-many schemes) and between one
and four dense layers. The LSTM layers used the tanh and sigmoid activation functions, while the
dense layers used ReLU activations.

Training was conducted using backpropagation, with early stopping applied if no improvement
in testing loss was observed after 25 epochs. To address potential issues arising from poor weight
initialisation by the Glorot Uniform method, the model was trained 20 times. The evaluation results
for the LSTM method are shown in table 5.
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Table 5.
LSTM Model Architecture Evaluation.
RMSE EVS
Architecture
Train Test Train Test
1 LSTM 1 Dense 725.02 899.17 0.808 0.521
1 LSTM 2 Dense 506.05 911.31 0.905 0.495
1 LSTM 3 Dense 382.48 646.61 0.945 0.746
1 LSTM 4 Dense 389.97 799.79 0.943 0.620
2 LSTM 1 Dense 825.82 862.77 0.755 0.544
2 LSTM 2 Dense 399.06 828.62 0.938 0.580
2 LSTM 3 Dense 678.61 811.47 0.826 0.613
2 LSTM 4 Dense 343.01 522.12 0.956 0.834

The evaluation results in table 5 show that the "2 LSTM 4 Dense" architecture achieved the best
performance among all variations tested. It recorded the lowest RMSE on the testing dataset (522.12)
and the highest EVS (0.834), indicating excellent accuracy in predicting the number of fire hotspots
and explaining a substantial portion of data variability.

Moreover, it demonstrated strong performance on the training dataset (RMSE 343.01, EVS
0.956), suggesting its capability to capture historical data patterns effectively. Conversely, simpler
architectures such as "1 LSTM 1 Dense" exhibited significantly lower performance, with a high
testing RMSE (899.17) and a low EVS (0.521), indicating insufficient ability to capture the
complexity of the temporal data. Although architectures with more dense layers generally showed
performance improvements, these results highlight the importance of using additional LSTM layers
to better capture complex temporal relationships. Thus, the "2 LSTM 4 Dense" architecture was
identified as the optimal choice for predicting fire hotspot numbers based on climatic factors in this
study.

4.3. Best Model

The best-performing models identified in the previous sections—GPR with Bayesian
optimisation and LSTM with a two-layer LSTM and four dense layers architecture—were compared
against the actual data, as shown in figure 3.

Figure 3 visualises the comparison between the prediction results of the two models, where (a)
GPR predictions are shown in red and (b) LSTM predictions in blue, against the actual data. It should
be noted that the LSTM model utilises lagged inputs; thus, predicting at time ¢ requires data from #-
12 to t-1, which results in no predictions being made for the year 2001.

It is evident that the LSTM model outperforms GPR in predicting the number of fire hotspots,
both on training and testing datasets, particularly during spike periods in the dry season. The GPR
model tends to underestimate the peak number of hotspots during major spike years in the training
data, notably in 2002, 2004, 2006, 2009, and 2015. In contrast, the LSTM model successfully captures
these peak events within the training period.

However, both models demonstrate limitations in predicting peak hotspot numbers within the
testing data. GPR notably overestimated the number of hotspots in 2018, while LSTM overestimated
in 2017 and underestimated in 2019, although it performed reasonably well in predicting the hotspot
count for 2018. Previous research (Gunadi et al., 2019) indicated that the decline in hotspot numbers
in 2018 was due to efforts aimed at supporting the Asian Games held in Indonesia.
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Furthermore, study (Nugrahani et al.,, 2024) reported that four different models tended to
overestimate hotspot occurrences during that year, consistent with the overestimation observed in the
GPR model. This discrepancy arises because machine learning models primarily rely on historical
patterns for predictions and typically do not account for real-world socioeconomic factors.
Nevertheless, the LSTM model, by incorporating temporal lags, appears to capture patterns more
closely related to recent data preceding the prediction period.
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Fig. 3. Prediction comparison between GPR and LSTM.

5. DISCUSSION

The comparative analysis between Gaussian Process Regression (GPR) and Long Short-Term
Memory (LSTM) models in this study reveals insightful findings on the challenges and strengths of
each method when applied to the prediction of forest fire hotspots in Kalimantan using climate factors.
Notably, the LSTM architecture with two LSTM layers and four dense layers produced the most
accurate results, achieving a testing RMSE of 522.12 and an EVS of 0.834. This performance
highlights LSTM’s superior ability to capture complex temporal dependencies, especially in climate-
driven phenomena that are seasonal and nonlinear.

This finding supports Kadir et al. (2023), who also found LSTM effective for hotspot forecasting
in Indonesia, achieving an average error of only 6.94% even when using simpler models based solely
on past hotspot counts. The present study builds upon that by integrating six climate predictors—
including rainfall, dry spells, ENSO, and IOD—thus expanding the model's explanatory power. The
enhanced accuracy confirms that including relevant climate variables strengthens LSTM’s
generalization, especially when paired with effective regularization techniques such as dropout and
early stopping.
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In contrast, GPR demonstrated solid performance during training but experienced a notable
decline in accuracy on test data, particularly when complex kernels like ARD Matern32 were used.
This suggests an overfitting issue, a phenomenon also discussed by Kamath et al. (2018), who found
GPR highly accurate but sensitive to hyperparameter settings and prone to overfitting in high-
complexity domains. Although GPR showed some generalization improvement with Bayesian
optimization, its testing RMSE (844.47) and EVS (0.608) remained well below that of the best-
performing LSTM model.

Similar concerns were raised in Hultquist et al. (2014), where GPR was outperformed by
Random Forests in predicting burn severity due to its relative inflexibility with noisy and high-
dimensional remote sensing data. These findings collectively suggest that while GPR has strong
theoretical appeal—especially with its uncertainty quantification and Bayesian foundation—it may
fall short in real-world applications involving dynamic temporal and multivariate data like wildfire
hotspot prediction.

Luo et al. (2024) further validate the LSTM architecture’s strength, demonstrating its capacity
to forecast methane emissions with high fidelity in multivariate time series scenarios. Their findings
align with this study’s conclusion that LSTM can effectively model complex environmental systems
where variables are interdependent and evolve over time. The success of deeper architectures (e.g., 2
LSTM + 4 dense layers) indicates that the model’s depth and capacity play a crucial role in capturing
spatiotemporal nuances in climate data.

However, one consistent limitation across studies—including this one—is the inability to predict
sociopolitical anomalies, such as the significant decrease in hotspots in 2018 due to government
efforts to reduce fires during the Asian Games. Gunadi et al. (2019) highlight the critical role of policy
in shaping fire outcomes, suggesting that models based purely on environmental predictors will
struggle to account for such interventions. This was evident when GPR overestimated and LSTM
underestimated fire counts for certain years—both reflecting the models' reliance on historical
climatic patterns without sociopolitical context. The example of South Africa (Madondo et al., 2023),
regionally different, but it supports the claim that socio-economic and governance interventions can
create anomalies versus climate-only predictors.

In conclusion, the study underscores the potential of LSTM for operational forest fire
forecasting, especially when enriched with relevant climatic inputs. Meanwhile, GPR remains
valuable for theoretical modeling and applications requiring probabilistic interpretation. Future
research should explore hybrid modeling approaches that combine the temporal learning strengths of
LSTM with the uncertainty quantification of GPR, while also integrating socioeconomic variables to
capture the full spectrum of fire dynamics in Kalimantan and similar fire-prone regions.

6. CONCLUSION

This study successfully demonstrated that both Gaussian Process Regression (GPR) and Long
Short-Term Memory (LSTM) models can be employed to predict the number of fire hotspots in
Kalimantan based on climate factors. Through model development and evaluation, the LSTM model
with two LSTM layers and four dense layers achieved superior performance, with a testing RMSE of
522.12 and an EVS of 0.834, indicating a strong capability to capture temporal patterns in climate
and fire data. The GPR model, although effective with Bayesian optimization, was less capable of
handling the complex temporal dependencies compared to LSTM. The research underscores the
importance of selecting models that can adapt to the temporal dynamics inherent in climate-induced
fire risks. Future studies may explore integrating socio-economic variables and higher-resolution
climate forecasts to further enhance the predictive performance and operational applicability of fire
hotspot prediction models in Kalimantan and similar tropical regions.



Sri NURDIATI, Mochamad Tito JULIANTO, lonel HAIDU, Muhammad Daryl FAUZAN, Hari ... 48

REFERENCES

Abbasimehr, H., & Paki, R. (2022). Improving time series forecasting using LSTM and attention models.
Journal of Ambient Intelligence and Humanized Computing, 13(1), 673—691.
https://doi.org/10.1007/s12652-020-02761-x

Anggraini, N., & Trisakti, B. (2011). Kajian dampak perubahan iklim terhadap kebakaran hutan dan deforestasi
di provinsi Kalimantan Barat. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 8.

Ardiyani, E., Nurdiati, S., Sopaheluwakan, A., Septiawan, P., & Najib, M. K. (2023). Probabilistic Hotspot
Prediction Model Based on Bayesian Inference Using Precipitation, Relative Dry Spells, ENSO and
1OD. Atmosphere. https://doi.org/10.3390/atmos 14020286

Bramawanto, R., & Abida, R. F. (2017). Tinjauan Aspek Klimatologi (ENSO dan I0OD) dan Dampaknya
Terhadap Produksi Garam Indonesia. Jurnal Kelautan Nasional.
https://doi.org/10.15578/jkn.v12i2.6061

DiPietro, R., & Hager, G. D. (2019). Deep learning: RNNs and LSTM. In Handbook of Medical Image
Computing and Computer Assisted Intervention. https://doi.org/10.1016/B978-0-12-816176-0.00026-0

Eaturu, A., Vadrevu, K.P. (2025). Evaluation of machine learning and deep learning algorithms for fire
prediction in Southeast Asia. Sci Rep 15, 18807. https://doi.org/10.1038/s41598-025-00628-9

Foley, E. (2024). Leveraging Gaussian Processes in Remote Sensing. Energies, 17(16).
https://doi.org/10.3390/en17163895

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks.
Journal of Machine Learning Research.

Gunadi, A., Gunardi, G., & Martono, M. (2019). THE LAW OF FOREST IN INDONESIA: PREVENTION
AND SUPPRESSION OF FOREST FIRES. Bina Hukum Lingkungan.
https://doi.org/10.24970/bhl.v4i1.86

Gusnita, D. (2021). Impact of Forest Fires in Sumatra and Kalimantan to Atmospheric Pollution During Period
Of 2010-2015. JKPK (Jurnal Kimia Dan Pendidikan Kimia). https://doi.org/10.20961/jkpk.v6i1.35027

Haidu, 1., Magyari-Séaska, Z., & Magyari-Séaska, A. (2025). Spatio-Temporal Gap Filling of Sentinel-2 NDI45
Data Using a Variance-Weighted Kalman Filter and LSTM Ensemble. Sensors, 25(17).
https://doi.org/10.3390/s25175299

Hultquist, C., Chen, G., & Zhao, K. (2014). A comparison of Gaussian process regression, random forests and
support vector regression for burn severity assessment in diseased forests. Remote Sensing Letters.
https://doi.org/10.1080/2150704X.2014.963733

Irwandi, H., Syamsu Rosid, M., & Mart, T. (2019). Identification of the El Nifio Effect on Lake Toba’s Water
Level Variation. IOP Conference Series: Earth and Environmental Science, 406(1).
https://doi.org/10.1088/1755-1315/406/1/012022

E. A. Kadir, H. T. Kung, S. L. Rosa, A. Sabot, M. Othman and M. Ting, "Forecasting of Fires Hotspot in
Tropical Region Using LSTM Algorithm Based on Satellite Data," 2022 IEEE Region 10 Symposium
(TENSYMP), Mumbai, India, 2022, pp. 1-7, doi: 10.1109/TENSYMP54529.2022.9864407.

Kadir, E. A., Kung, H. T, Rosa, S. L., Sabot, A., Othman, M. & Ting, M. (2022). Forecasting of Fires Hotspot
in Tropical Region Using LSTM Algorithm Based on Satellite Data. [EEE Region 10 Symposium
(TENSYMP), Mumbeai, India, pp. 1-7, doi: 10.1109/TENSYMP54529.2022.9864407.

Kadir, E. A., Kung, H. T., AlMansour, A. A., Irie, H., Rosa, S. L., & Fauzi, S. S. M. (2023). Wildfire Hotspots
Forecasting and Mapping for Environmental Monitoring Based on the Long Short-Term Memory
Networks Deep Learning Algorithm. Environments - MDPI.
https://doi.org/10.3390/environments 10070124

Kamath, A., Vargas-Hernandez, R. A., Krems, R. V., Carrington, T., & Manzhos, S. (2018). Neural networks
vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit
quality and vibrational spectrum accuracy. Journal of Chemical Physics.
https://doi.org/10.1063/1.5003074

La Fata, A., Moser, G., Procopio, R., Bernardi, M., & Fiori, E. (2024). A Gaussian Process Regression Method
to Nowcast Cloud-to-Ground Lightning from Remote Sensing and Numerical Weather Modeling Data.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-31.
https://doi.org/10.1109/JSTARS.2024.3501976



49

Li, J., Huang, D., Chen, C., Liu, Y., Wang, J., Shao, Y., Wang, A., & Li, X. (2024). Prediction of Forest-Fire
Occurrence in Eastern China Utilizing Deep Learning and Spatial Analysis. Forests, 15(9), 1672.
https://doi.org/10.3390/f15091672

Li, Z., Hong, X., Kuangrong, H., Lei, C., & Biao, H. (2020). Gaussian Process Regression with heteroscedastic

noises — A machine-learning predictive variance approach. Chemical Engineering Research and Design,
157. https://doi.org/10.1016/j.cherd.2020.02.033

Listia Rosa, S., Abdul Kadir, E., Syukur, A., Irie, H., Wandri, R. & Fikri Evizal, M. (2022). Fire Hotspots
Mapping and Forecasting in Indonesia Using Deep Learning Algorithm. 3rd International Conference
on Electrical Engineering and Informatics (ICon EEI), Pekanbaru, Indonesia, pp. 190-194, doi:
10.1109/1ConEEI55709.2022.997228]1.

Luo, R., Wang, J., & Gates, 1. (2024). Forecasting Methane Data Using Multivariate Long Short-Term Memory
Neural Networks. Environmental Modeling and Assessment. https://doi.org/10.1007/s10666-024-09957-
X

MacKinnon, K., & Hatta, G. (2013). Ecology of Kalimantan: Indonesian Borneo. Tuttle Publishing.

Madondo, R., Tandlich, R., Stoch, E., Restas, A., & Shwababa, S. (2023). Quantitative and Qualitative Data in
Disaster Risk Management of Fires: A Case Study from South Africa at Various Geographical Levels.
Geographia Technica, 18(2), 14-39. https://doi.org/10.21163/GT_2023.182.02

Najib, M. K., Nurdiati, S., & Sopaheluwakan, A. (2021). Quantifying the joint distribution of drought
indicators in Borneo fire-prone area. IOP Conference Series: Earth and Environmental Science.
https://doi.org/10.1088/1755-1315/880/1/012002

Najib, M. K., Nurdiati, S., & Sopaheluwakan, A. (2022). Multivariate fire risk models using copula regression
in Kalimantan, Indonesia. Natural Hazards. https://doi.org/10.1007/s11069-022-05346-3

Noh, S. H. (2021). Analysis of gradient vanishing of RNNs and performance comparison. /nformation
(Switzerland). https://doi.org/10.3390/info12110442

Nugrahani, E. H., Nurdiati, S., Bukhari, F., Najib, M. K., Sebastian, D. M., & Nur Fallahi, P. A. (2024).
Sensitivity and feature importance of climate factors and evaluation of different machine learning
models for predicting fire hotspots in Kalimantan, Indonesia. JAES Int. J. Artif. Intell. (1J-A1), 13(2),
2212. https://doi.org/10.11591/ijai.v13.12.pp2212-2225

Nurdiati, S., Bukhari, F., Julianto, M. T., Sopaheluwakan, A., Aprilia, M., Fajar, 1., Septiawan, P., & Najib, M.
K. (2022). The impact of El Nifio southern oscillation and Indian Ocean Dipole on the burned area in
Indonesia. Terrestrial, Atmospheric and Oceanic Sciences. https://doi.org/10.1007/S44195-022-00016-0

Nurdiati, S., Bukhari, F., Sopaheluwakan, A., Septiawan, P., & Hutapea, V. (2024). ENSO and IOD impact
analysis of extreme climate condition in Papua, Indonesia. Geographia Technica, 19(1), 1-18.
https://doi.org/10.21163/gt 2024.191.01

Nurdiati, S., Najib, M., Bukhari, F., Revina, R., & Salsabila, F. (2022). PERFORMANCE COMPARISON OF
GRADIENT-BASED CONVOLUTIONAL NEURAL NETWORK OPTIMIZERS FOR FACIAL
EXPRESSION RECOGNITION. BAREKENG: Jurnal llmu Matematika Dan Terapan, 16(3), 927-938.
https://doi.org/10.30598/barekengvoll6iss3pp927-938

Nurdiati, S., Sopaheluwakan, A., Julianto, M. T., Septiawan, P., & Rohimahastuti, F. (2022). Modelling and
analysis impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic
function: cases study in South Sumatra and Kalimantan, Indonesia. Modeling Earth Systems and
Environment. https://doi.org/10.1007/s40808-021-01303-4

Oyedele, A. A., Ajayi, A. O., Oyedele, L. O., Bello, S. A., & Jimoh, K. O. (2023). Performance evaluation of
deep learning and boosted trees for cryptocurrency closing price prediction. Expert Systems with
Applications, 213, 119233. https://doi.org/https://doi.org/10.1016/j.eswa.2022.119233

Putra Mulia, Nofrizal, & Dewi, W. N. (2021). Analisis Dampak Kabut Asap Karhutla Terhadap Gangguan
Kesehatan Fisik Dan Mental. HEALTH CARE : JURNAL KESEHATAN.
https://doi.org/10.36763/healthcare.v10i1.103

Qirom, M. A., Rachmanadi, D., Lestari, F., & Andriani, S. (2022). Forest structure change after forest fire in
peatland of Central Kalimantan. /OP Conference Series: Earth and Environmental Science.
https://doi.org/10.1088/1755-1315/1115/1/012019

Rafhida, S. A., Nurdiati, S., Budiarti, R., & Najib, M. K. (2024). Bias correction of lake Toba rainfall data
using quantile delta mapping. CAUCHY, 9(2), 297-309. https://doi.org/10.18860/ca.v9i2.29124.

Rasmussen, C. E., & Williams, C. K. 1. (2019). Gaussian processes for machine learning. MIT Press.



Sri NURDIATI, Mochamad Tito JULIANTO, lonel HAIDU, Muhammad Daryl FAUZAN, Hari ... 50

Reddy, C. S., Bird, N. G., Sreelakshmi, S., Manikandan, T. M., Asra, M., Krishna, P. H., Jha, C. S., Rao, P. V.
N., & Diwakar, P. G. (2019). Identification and characterization of spatio-temporal hotspots of forest
fires in South Asia. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-
7695-6

Saharjo, B. H., & Hasanah, U. (2023). Analisis Faktor Penyebab Terjadinya Kebakaran Hutan dan Lahan di
Kabupaten Pulang Pisau, Kalimantan Tengan. Journal of Tropical Silviculture.
https://doi.org/10.29244/j-siltrop.14.01.25-29

Saharjo, B. H., & Velicia, W. A. (2018). The Role of Rainfall Towards Forest and Land Fires Hotspot
Reduction in Four Districs in Indonesia on 2015-2016. Journal of Tropical Silviculture.
https://doi.org/10.29244/j-siltrop.9.1.24-30

Sari, R., Trihardianingsih, L., Firdaus Mulya, R., Arief, M. 1., & Kusrini, K. (2022). Analisis Index Vegetation
Wilayah Terdampak Kebakaran Hutan Riau Menggunakan Citra Landsat-8 dan Sentinel-2. Cog/To
Smart Journal. https://doi.org/10.31154/cogito.v8i2.439.282-294

Sarmiasih, M., & Pratama, P. Y. (2019). The Problematics Mitigation of Forest and Land Fire District
Kerhutla) in Policy Perspective (A Case Study : Kalimantan and Sumatra in Period 2015-2019). Journal
of Governance and Public Policy. https://doi.org/10.18196/jgpp.63113

Sudrajat, A. S. E., & Subekti, S. (2019). Pengelolaan Ekosistem Gambut Sebagai Upaya Mitigasi Perubahan
Iklim Di Provinsi Kalimantan Selatan. Jurnal Planologi. https://doi.org/10.30659/jpsa.v16i2.4459

Terry, J. K., Jayakumar, M., & Alwis, K. De. (2021). Statistically Significant Stopping of Neural Network
Training. CoRR, abs/2103.0. https://arxiv.org/abs/2103.01205

Ulya, N. A., & Yunardy, S. (2006). Analisis Dampak Kebakaran Hutan di Indonesia Terhadap Distribusi
Pendapatan Masyarakat. Jurnal Penelitian Sosial Dan Ekonomi Kehutanan, 3(2), 133—146.
https://doi.org/10.20886/jpsek.2006.3.2.133-146

Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., Van
Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., & Kasibhatla, P. S. (2017). Global fire
emissions estimates during 1997-2016. In Earth System Science Data. https://doi.org/10.5194/essd-9-
697-2017

Wasis, B., Saharjo, B. H., & Waldi, R. D. (2019). Dampak Kebakaran Hutan Terhadap Flora Dan Sifat Tanah
Mineral Di Kawasan Hutan Kabupaten Pelalawan Provinsi Riau. Journal of Tropical Silviculture.
https://doi.org/10.29244/j-siltrop.10.1.40-44

Ye, W., Alawieh, M. B., Li, M., Lin, Y., & Pan, D. Z. (2019). Litho-GPA: Gaussian Process Assurance for
Lithography Hotspot Detection. Proceedings of the 2019 Design, Automation and Test in Europe
Conference and Exhibition, DATE 2019. https://doi.org/10.23919/DATE.2019.8714960

Yuliarti, A., & Anggraini, R. N. (2022). Pengembangan Strategi Pengurangan Risiko Kebakaran Gambut
Dalam Bingkai Media Berdasarkan Jumlah Hotspot Menggunakan S-Npp Viirs. PROSIDING SEMINAR



