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ABSTRACT 

Flood disasters in Enrekang Regency, South Sulawesi Province, have caused significant material losses 

and disrupted community activities due to the region’s unique geographical characteristics with 

undulating and mountainous topography. The Saddang River, as one of the main rivers in South 

Sulawesi, flows through this area, making it highly vulnerable to flooding, especially during the rainy 

season. Rapid land cover changes due to human activities such as settlement expansion, agriculture, 

and deforestation have increasingly elevated flood risks. Land conversion from forests to agricultural 

and settlement areas reduces water absorption capacity and increases surface runoff. Currently, flood 

management in Enrekang Regency remains reactive, with budgets allocated more for post-disaster 

response than for mitigation and prevention. This research develops an integrated Artificial Neural 

Network Cellular Automata (ANN-CA) model for land use change prediction and flood risk mitigation. 

The model integrates remote sensing technology, ANN-CA modeling, and Geographic Information 

Systems (GIS) to predict future land use changes and identify high flood-risk areas. The methodology 

involves satellite image acquisition (2010-2020), land cover change extraction, ANN training, CA 

configuration, model validation (Accuracy >85%, Kappa >0.8), and integration with flood risk factors. 

Results show that the model can effectively predict land use changes with high accuracy, providing 

valuable spatial information for flood mitigation planning. The predicted land use map for 2030 

indicates significant expansion of built-up areas in flood-prone zones, necessitating immediate policy 

interventions. This research contributes to the development of predictive and preventive flood 

management approaches, offering a scientific basis for spatial planning and disaster risk reduction in 

mountainous regions. 
 

Keywords: Artificial Neural Network; Land use change prediction; Flood risk mitigation; Remote 

sensing; Spatial analysis. 

1. INTRODUCTION 

1.1. Background 

Enrekang Regency, located in South Sulawesi Province, Indonesia, possesses unique 

geographical characteristics with undulating and mountainous topography (Uca et al., 2023, 2018). 

The region is traversed by the Saddang River, one of the major rivers in South Sulawesi, making it 

particularly vulnerable to flooding during rainy seasons (Rachmayanti et al., 2022; Uca et al., 2021). 

Historical data indicates that floods in Enrekang Regency have caused substantial material losses and 

disrupted community activities, affecting both urban and rural areas. Rapid land cover changes 

resulting from human activities such as settlement expansion, agricultural development, and 

deforestation have increasingly exacerbated flood risks (Uca et al., 2018). The conversion of forest 

land to agricultural and settlement areas reduces water absorption capacity (Farhan et al., 2024) and 

increases surface runoff, amplifying flood potential (Nugraheni et al., 2022). The agrarian crisis and 

ecological disasters in the Latimojong Mountains, which fall within Enrekang Regency, have further 

worsened this condition. 
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Current flood management approaches in Enrekang Regency remain predominantly reactive, 

with budget allocations favoring post-disaster response over mitigation and prevention. This approach 

is inefficient both economically and socially, highlighting the need for innovative predictive and 

preventive solutions (Rajeev and Singh, 2016). Recent advances in geospatial technologies and 

modeling approaches offer new opportunities for flood risk mitigation (Sudiana et al., 2025). The 

integration of remote sensing, Artificial Neural Network Cellular Automata (ANN-CA), and 

Geographic Information Systems (GIS) has shown promise in predicting land use changes and 

assessing flood risks (Xu et al., 2021; Yang et al., 2025). These technologies enable the development 

of comprehensive models that can simulate future land use scenarios and identify areas at high risk 

of flooding (Singh et al., 2021). Land Use Change (LUC) modeling has evolved from conventional 

statistical methods to the utilization of advanced Machine Learning (ML) and Deep Learning (DL) 

algorithms. Alternative approaches, such as Random Forest (RF) and Support Vector Machine 

(SVM), have proven highly effective for LUC classification and prediction, often exhibiting superior 

classification accuracy compared to traditional methods (Asif et al., 2023; Mutale et al., 2024). 

Furthermore, Deep Learning models like Convolutional Neural Network (CNN), and hybrid models 

such as CNN-LSTM, offer advanced capabilities in extracting hierarchical spatio-temporal features, 

making them robust for dynamic LUC prediction and capturing complex non-linear relationships (Lei 

et al., 2025; Varma et al., 2024).  

However, while these ML/DL models excel in pattern recognition and quantity prediction, they 

inherently face challenges in simulating explicit spatial processes, cellular interactions, and directly 

integrating external policy constraints or scenarios into the transition mechanism. To overcome these 

limitations and provide an application-oriented framework suitable for policy intervention, this 

research selects the integrated Artificial Neural Network–Cellular Automata (ANN-CA) Model. 

ANN-CA provides an optimal hybrid solution: the ANN effectively maps the non-linear 

relationship between various driving factors (e.g., topography, hydrology, and socio-economics) and 

LUC transition probabilities, while the Cellular Automata (CA) component is uniquely capable of 

applying localized transition rules, neighborhood effects, and crucial policy/scenario constraints at 

the pixel level (Khan and Khan, 2025; Tharik et al., 2025). This integration is vital as it allows the 

model to not only predict what changes but also to simulate where those changes occur under specific 

planning conditions, a capability essential for scenario-based flood mitigation and proactive spatial 

planning in the mountainous context of Enrekang Regency. 

This research addresses the critical gap in flood management by developing an integrated ANN-

CA model for land use change prediction specifically tailored for flood mitigation in Enrekang 

Regency. Current flood management practices often lack the predictive capabilities needed for 

proactive risk reduction. Therefore, the model aims to provide decision-makers with robust spatial 

information and predictive insights to support proactive flood risk reduction strategies. The 

subsequent sections will provide the necessary background, critically reviewing existing research and 

debates relevant to integrated land use modeling and flood risk, thereby highlighting the gaps that this 

study aims to fill and setting the stage for the research objectives.  

1.2. Research Gap 

While numerous studies have addressed Land Use Change (LUC) modeling and flood risk 

assessment independently, there remains a significant limitation in their integration, especially for 

mitigation purposes in complex mountainous regions such as Enrekang Regency (Gabriels et al., 

2022; Iskandar and Ridzuan, 2022; Merten et al., 2020). Previous studies have often focused on urban 

flood risk assessment or general land use change prediction without specific consideration for flood 

mitigation applications. This research specifically addresses three critical gaps: (1) The limited 

integration of the Artificial Neural Network–Cellular Automata (ANN-CA) model with flood risk 

factors in challenging geographical contexts. (2) The insufficient comprehensive validation of 

predictive LUC models for flood risk applications in developing countries. (3) The lack of translating 

predictive modeling outcomes into actionable spatial policy recommendations that local governments 

can readily implement. 
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1.3. Research Objective 

The main objective of this research is to develop and validate an integrated ANN-CA model for 

predicting land use changes up to the year 2030 in Enrekang Regency, with explicit consideration of 

flood risk factors. The resulting predictions will be utilized to formulate spatial recommendations that 

support flood mitigation efforts. The significant contribution of this study is providing a predictive 

and preventive scientific basis for spatial planning and disaster risk reduction. By integrating 

advanced computational modeling with disaster risk assessment in a vulnerable region, this research 

offers valuable insights for more effective and sustainable decision-making. 

2. STUDY AREA 

Enrekang Regency is located in South Sulawesi Province, Indonesia, between 3°14’ - 3°50’ South 

Latitude and 119°40’ - 120°06’ East Longitude (Fig. 1.). The regency covers an area of approximately 

1,956.28 km² with a population of around 250,000 people. 

The topography of Enrekang Regency is characterized by mountainous terrain with elevations 

ranging from 50 to 3,478 meters above sea level. The Saddang River and its tributaries form the main 

drainage system, flowing through the regency from north to south. The region experiences a tropical 

climate with average annual rainfall ranging from 2,000 to 3,000 mm, concentrated mainly in the 

rainy season (November to April).  

Land use in Enrekang Regency is dominated by agricultural land (45%), forest areas (30%), 

settlement areas (10%), and other uses (15%) (Uca et al., 2023). Recent decades have seen significant 

land use changes, particularly the conversion of forest land to agricultural and settlement areas, 

contributing to increased flood risks. 

Enrekang Regency was selected as a case study because it represents critical and complex 

conditions: steep mountainous topography, a sensitive watershed system (Saddang River), and rapid 

land use change (LUC). The performance of the integrated ANN-CA model in this region is strongly 

influenced by key local parameters trained as network inputs: (1) Elevation and Slope, which 

constrain LUC and accelerate surface runoff; (2) Proximity to the Saddang River, which drives 

settlement expansion into risk zones; and (3) Accessibility, which is a main driver of development 

patterns. This approach is generalizable to other mountainous regions with watersheds sensitive to 

LUC changes (e.g., critical watersheds in Indonesia). This generalization requires recalibration of the 

ANN input weights and CA transition rules to match the specific LUC driving parameters of the new 

location (e.g., soil type or local spatial planning policies). The model offers a flexible framework that 

necessitates local adjustment for accurate results. 

3. DATA AND METHODS 

3.1. Remote Sensing Data 

Satellite imagery from multiple sources was collected to analyze land use changes in Enrekang 

Regency: 

1) Landsat Imagery: Landsat 5 Thematic Mapper (TM) (2010), Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) (2015), and Landsat 8 Operational Land Imager (OLI) (2020), all with 

a 30-meter spatial resolution. These datasets were accessed from the United States 

Geological Survey (USGS) Earth Explorer archive, an open-access repository. 

2) Sentinel-2 Imagery: High-resolution data from Sentinel-2A and Sentinel-2B missions (2020) 

with a 10-meter spatial resolution for visible and near-infrared bands, obtained from the 

European Space Agency's Copernicus Open Access Hub. This dataset was used to improve 

classification accuracy in the 2020 land cover mapping. Sentinel-2 data was used as a high-

resolution reference to improve the classification accuracy of our 2020 Land Use Map (as 

the historical end year), thereby increasing the reliability of the transition matrix. However, 

30m resolution was maintained as the operational resolution of the ANN-CA Model to ensure 

long-term spatial consistency with Landsat data (2010, 2015) and the 30m DEM. 



Uca SIDENG, Nurul Afdal HARIS and  Mustari S. LAMADA / AN INTEGRATED ANN-CA MODEL FOR … 54 

 

3) Digital Elevation Model (DEM): The Shuttle Radar Topography Mission (SRTM) 30-meter 

DEM was used for topographic analysis, including slope and elevation modeling. SRTM 

data is an open-source dataset developed by NASA and available through USGS Earth 

Explorer. 

All satellite images were subjected to comprehensive pre-processing to ensure data consistency 

and analytical accuracy. This included radiometric calibration, atmospheric correction (using 

Sen2Cor for Sentinel-2 and FLAASH/LEDAPS for Landsat), and geometric correction using ground 

control points and TRIM reference data. The integration of these open datasets aligns with the 

recommended use of globally accessible geospatial resources such as those endorsed by open science 

initiatives and Earth observation programs. 

 

Fig. 1. Research Location Map (Enrekang Regency, South Sulawesi, Indonesia). 

3.2. Ancillary Data 

To support the modeling process, various additional data layers were collected (Tabel 1). These 

included Topographic Data (such as slope, aspect, and curvature derived from the DEM), 

Hydrological Data (comprising river networks, watershed boundaries (Fig. 2), and flood history 

records), and Infrastructure Data (covering road networks, settlement locations, and administrative 

boundaries). Furthermore, Socio-economic Data was gathered, including statistics on population 

density, land values, and agricultural productivity (BPS Enrekang, 2025, 2021, 2016, 2011). All 

collected data were subsequently processed and integrated into a consistent spatial reference system, 

namely WGS 84 UTM Zone 50S, and resampled to a common spatial resolution of 30m. 

3.3. Land Use Classification 

3.3.1. Land Use Classification and Feature Exztraction 

Land use classification was conducted using a supervised classification approach which involved 

several steps (Fig. 3). First, Training Sample Collection was performed by gathering ground truth 

points through field surveys and interpretation of high-resolution imagery. The classification itself 

was executed using the Support Vector Machine (SVM) algorithm for its known effectiveness in 

handling complex spectral signatures.  
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Table 1. 

Data Used. 

Data Specification Source Objective 

Landsat Imagery Landsat 5 Thematic 

Mapper (TM) (2010) 

Landsat 7 Enhanced 

Thematic Mapper Plus 

(ETM+) (2015) Landsat 8 

Operational Land Imager 

(OLI) 2020).All in 30m 

resolution with <10% 

cloude cover 

USGS 

EarthExplorer  

https://earthexplor

er. usgs.gov 

Historical Input Data and Multi-temporal 

Feature Extraction. Used to: 1) Map Land 

Use in 2010 and 2015 (to train the time-

series model). 2) Calculate the LUC 

Transition Matrix (a key multi-temporal 

feature). 3) Set the model to a 30m 

operational resolution for long-term 

consistency. 

Sentinel-2 

Imagery 

S2A Mission with 10m 

resolution and <10% 

cloud cover 

Copernicus 

Browser 

https://browser.dat

aspace.copernicus

.eu 

Classification Accuracy Improvement. Used 

to: 1) Improve the accuracy and detail of the 

2020 Land Use Map (as a validated final 

year baseline map). 2) Ensure the most up-

to-date and accurate LUC classification as 

input to the Transition Matrix. 

Digital 

Elevation  

Model (DEM) 

USGS EROS Archive - 

Digital Elevation - Shuttle 

Radar Topography 

Mission (SRTM) 1 Arc-

Second Global 

USGS 

EarthExplorer 

https://earthexplor

er .usgs.gov  

Extraction of Topographic Driving Factors. 

Used to: 1) Provide baseline elevation data. 

2) Serve as a basis for generating driving 

factors (such as slope and aspect) that will be 

used as input variables for the ANN Model. 

Topographic 

Data 

Extraction from 

DEM data 

LULC Driving Factors. Used as independent 

input variables in ANN training to model 

how elevation, slope, and aspect affect the 

probability of land use change. 

Hydrological 

Data 

Extraction from 

DEM data 

Water-related LULC Driving Factors. Used 

as independent input variables in ANN 

training to model the influence of hydrology 

(e.g., distance from rivers, drainage density) 

on land use change, which is important for 

flood risk. 

Infrastructure 

Data 

30m resoution and 10m 

resolution data extraction 

1:50000 Scale for Vector 

data 

Integrated data of 

Classification 

Map and Vector 

data from Ina-

Geoportal  

https://tanahair.in

donesia. go.id  

Anthropogenic/Policy Driving Factors. Used 

to: 1) Measure proximity to roads and 

settlements (as driving factors for human 

activity). 2) Integrate spatial constraints or 

CA rules based on infrastructure location. 

Socio-economic 

Data 

Statistical Data for each 

region 

Book Report of 

Badan Pusat 

Statistik (Central 

Bureau of 

Statistics) 2010, 

2015, 2020, and 

2025 

Non-Spatial Driving Factors and Regional 

Scale Validation. Used to: 1) Provide non-

spatial variables (e.g., population density, 

economic growth) that may influence the 

LUC transition probability. 2) Control the 

total macro growth of the study area in the 

CA Model simulation. 
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Fig. 2. The DEM/Hillshade and Watersheds within Enrekang Regency. 

For the classification model, we used six standard Landsat feature bands: Blue (B2), Green (B3), 

Red (B4), Near Infrared (NIR, B5), Shortwave Infrared 1 (SWIR1, B6), and Shortwave Infrared 2 

(SWIR2, B7). In addition, we included two derived spectral indices, the Normalized Difference 

Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI), to improve class 

discrimination.  Six major Land Use Categories were identified for mapping: Forest Land, 

Agricultural Land, Built-up Land, Water Body, Bare Land, and Shrub/Grassland. Finally, an 

Accuracy Assessment was performed using a confusion matrix, which demonstrated robust results, 

with the overall accuracy exceeding 90% and the Kappa coefficient scoring above 0.85. The resulting 

classification maps for the years 2010, 2015, and 2020 were then utilized to analyze land use change 

patterns and trends. 

3.3.2. Land Use Classification and Feature Exztraction 

This study exploits the temporal dynamics of LUC through two main steps. First, we perform a 

change detection analysis between the 2010, 2015, and 2020 land use maps. Second, the results are 

used to extract the LUC Transition Matrix (Land Use Change Transition Matrix). This matrix is a 

fundamental multi-temporal feature that is fed into the ANN training. By training the ANN on 

probabilities derived from actual changes between time periods, the model implicitly learns the 

sequence and historical trend of LUC transitions (e.g., Forest to Agriculture or Agriculture to 

Settlement). Although we do not use an explicit sequential model such as LSTM, this approach 

enables CA-based modeling to drive future change dynamics based on multi-temporal trends observed 

from Landsat data. 

Sampling and Validation Sampling was conducted using stratified random sampling for each 

LUC class. A total of 450 samples (training points) were collected for each LUC map year, verified 

using Very High Resolution (VHR) imagery Sentinel-2 imagery from 2020. These samples were 

divided into two sets: Training Sample: 80% of the total samples (360 samples) were used to train the 

algorithm. Validation Sample: 20% of the total samples (90 samples) were used to test the accuracy 
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of the generated maps. The accuracy of the LUC maps was validated using a Confusion Matrix Table, 

which includes Overall Accuracy and Kappa Coefficient metrics. The Confusion Matrix results for 

each year are presented in detail in Section 4.1 (Classification Results). The minimum accuracy 

requirement is Kappa ≥ 0.8 to ensure reliable historical LUC maps as input for the ANN-CA model. 

 
Fig. 3. Remote sensing workflow diagram for land cover classification in Enrekang Regency. 

3.4. ANN-CA Model Development 

The integrated ANN-CA model was developed with several components 

3.4.1. Artificial Neural Network (ANN) Component 

The Artificial Neural Network (ANN) component was specifically designed to predict land use 

change probabilities by incorporating multiple driving factors. The model utilized eight input 

variables: distance to roads, distance to rivers, distance to settlement centers, elevation, slope, 

population density, land use in the previous period, and policy constraints (protected areas). The 

Network Architecture consisted of an input layer with eight neurons (one for each variable), a hidden 

layer containing 15 neurons using a sigmoid activation function, and an output layer with six neurons 

corresponding to the change probability for each land use category. The Training Process applied the 

backpropagation algorithm with a learning rate of 0.01. Training data was derived from the observed 

land use changes between 2010-2015 and 2015-2020. To ensure model reliability, 20% of the samples 

were reserved as validation data, and the training was stopped once the validation error had stabilized. 

 

Number of Hidden 

Neuorns (15) 

The number of neurons was determined empirically through a 

trial-and-error process to achieve the highest model validation 

accuracy (Kappa > 0.8) while minimizing training time. This 

number approximates half of the number of input features 

(approximately 30 driving factors). This heuristic approach is 

widely adopted in ANN-CA research to balance the model's 

learning capacity and prevent overfitting (Razavi, 2014; Wang 

et al., 2021) 
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Learning Rate (0.01) This value was chosen after optimization to ensure stable and 

efficient convergence of the loss function. An excessively high 

rate (e.g., 0.1) risks causing oscillation, while a lower rate 

significantly slows down the training process. A value of 0.01 

is common and proven effective in many ANN-based LUC 

modeling studies for achieving timely and accurate 

convergence (Ouma et al., 2024; Zhang et al., 2022) 

Training Literations 

(500) 

This value was selected because testing results indicated that 

the model reached its optimal convergence point (the decrease 

in the loss function became minimal) at or before the 500 

iteration, thus preventing unnecessary computational waste 

caused by excessive iteration. (Razavi, 2014) 

3.4.2. Cellular Automata (CA) Component 

The CA component simulates spatial dynamics of land use changes based on transition rules 

derived from the ANN: 

Transition Rules: 

𝑃𝑖𝑗
𝑡 =

1

1+𝑒
−𝑧𝑖𝑗

      (1) 

where: 

 𝑃𝑖𝑗
𝑡  is the probability of cell (i,j) changing to a particular land use type at time t 

 𝑧𝑖𝑗  is the weighted sum of input factors for cell (i,j) 

 

Neighborhood Effect: The influence of neighboring cells was calculated using a 3×3 kernel: 

 

𝛺𝑖𝑗
𝑡 =

∑ 𝑐3×3 𝑜𝑛(𝑐𝑒𝑙𝑙𝑖𝑗=𝑘)

8
     (2) 

where: 

 𝛺𝑖𝑗
𝑡   is the neighborhood effect for cell (i,j) at time t 

 𝑐𝑜𝑛( ) is a conditional function that returns 1 if the condition is true, 0 otherwise 

 

Combined Probability: The final transition probability combines ANN output and 

neighborhood effect: 

𝑇𝑃𝑖𝑗
𝑡 = 𝑃𝑖𝑗

𝑡 × (1 + 𝛺𝑖𝑗
𝑡 ) × 𝑅𝐴𝑁𝐷   (3) 

where: 

 𝑇𝑃𝑖𝑗
𝑡  is the final transition probability 

 𝑅𝐴𝑁𝐷  is a random factor between 0.5 and 1.5 to introduce stochasticity 

Selecting this range [0.5, 1.5] is standard practice in CA modeling to introduce a 

moderate level of uncertainty (up to 50 probabilistic changes). This is done to 

prevent the model from becoming too deterministic, so that the simulation results 

are more realistic and closer to the spatial distribution of naturally occurring land 

use changes (Xu et al., 2023).  

3.4.2. Model Calibration and Validation 

The process of using 2010-2015 data for calibration and predicting the 2020 map for validation 

serves as a hindcasting approach, confirming the model's ability to accurately project future states 

before simulating the final 2030 scenario. The hyperparameter tuning for the ANN-CA model 

involved an iterative process where the learning rate (fixed at 0.01) and the spatial weightings within 

the 3x3 CA neighbourhood kernel were optimized using a genetic algorithm to maximize the Figure 

of Merit (FoM). The model underwent a rigorous Calibration Process to ensure optimal performance. 

This involved parameter optimization utilizing genetic algorithms, followed by a sensitivity analysis 

to accurately identify the most influential parameters affecting the simulation outcome. An iterative 
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adjustment process was then carried out to closely match the model's output with historical land use 

change patterns. The model's reliability was assessed using several Validation Metrics, including 

Overall Accuracy (OA), which measures the proportion of correctly predicted cells; the Kappa 

Coefficient, which gauges agreement beyond chance; and the Figure of Merit (FoM), which 

specifically evaluates the model's skill in predicting actual land use changes. The final Validation 

Results demonstrated strong performance: the Overall Accuracy was 87.3%, the Kappa Coefficient 

reached 0.82, and the Figure of Merit was 0.31. 

These results indicate that the model performs well in predicting land use changes and is suitable 

for scenario simulation. To prevent spatial leakage and ensure the model's generalization capability 

to unobserved areas, a spatial block cross-validation (CV) approach was employed during the ANN 

training. This involved partitioning the study area into spatially distinct blocks and ensuring that the 

training and validation data were drawn from different blocks. 

3.4.3. Scenario Integration within the ANN-CA Framework 

The various policy-based scenarios (e.g., Business As Usual, Conservation, Rapid 

Development) are incorporated into the model by modifying the parameters of the Cellular Automata 

(CA) component, not the internal structure or weights of the Artificial Neural Network (ANN). The 

ANN is exclusively used to calculate the intrinsic transition potential (P) of a cell based on historical 

driving factors. This potential remains consistent across all scenarios. Scenario assumptions are 

implemented in the CA transition rules through Policy Constraint Factors and Spatial Multipliers. 

These factors act as spatial overrides: 

1) Constraints: In scenarios focusing on mitigation or conservation, specific areas (e.g., high-

risk flood zones or protected forests) are assigned a low or zero transition factor in the CA 

rules, effectively overriding the high potential (P) calculated by the ANN. 

2) Multipliers: In development scenarios, areas designated for new infrastructure receive a high 

attraction factor (multiplier > 1), artificially boosting the probability of land use change 

(LUC) in surrounding cells during the CA iteration, thus controlling the final spatial 

allocation based on the assumed policy environment. 

This mechanism ensures that the ANN provides the likelihood of change, while the scenario-

modified CA controls the realization and policy-driven allocation of that change. 

 

3.5. Flood Risk Assessment 

Flood risk assessment was integrated with the land use change model through the following 

approach: 

3.5.1. Flood Hazard Mapping 

Flood hazard was assessed using a multi-criteria evaluation approach incorporating: 

Physical Factors a. Elevation and slope 

b. Distance from rivers 

c. Soil type and infiltration capacity 

d. Rainfall intensity 

Hydrological 

Modelling 

a. Soil Conservation Service (SCS) Curve Number method 

for runoff estimation 

b. Manning’s equation for flow velocity calculation 

c. Flood inundation mapping using GIS-based hydrological 

modeling 

Hazard Classification  a. Very Low 

b. Low 

c. Medium 

d. High 

e. Very High 
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3.5.2. Vulnerability Assessment 

Vulnerability was assessed considering: 

 

Physical Vulnerability a. Building type and construction materials 

b. Infrastructure exposure 

c. Land use types 

Social Vulnerability a. Population density 

b. Age distribution (elderly and children) 

c. Income levels and access to resources 

d. Emergency response capacity 

Vulnerability Index  A composite vulnerability index was calculated using weighted 

overlay of vulnerability factors. 

3.5.3. Risk Integration 

Flood risk was calculated as the product of hazard and vulnerability: 

 

Risk = Hazard×Vulnerability     (4) 

 

Risk maps were generated for current conditions and future scenarios based on land use change 

predictions. In line with best practices for predictive geospatial models, a map of model uncertainty 

will also be generated for the final flood risk surfaces to provide decision-makers with a measure of 

confidence alongside the risk prediction. 

3.6. Scenario Development 

Three scenarios were developed to explore the implications of different policy interventions: 

3.6.1. Business-as-Usual (BAU) Scenario 

This scenario is based on the assumption of a continuation of current trends and policies. 

Specifically, it posits a future where there are no additional land use restrictions implemented, 

allowing for market-driven development patterns to dominate. Consequently, the analysis assumes 

that historical rates of deforestation and urbanization will continue unchanged throughout the 

projection period. 

3.6.2. Conservation Scenario 

This scenario, conversely, places a strong emphasis on environmental protection. Key 

assumptions include the implementation of strict protection measures for forest areas and riparian 

zones. Furthermore, it assumes efforts are made toward the reforestation of critical watershed areas 

to enhance ecological function. Finally, this scenario mandates restrictions on development activities 

within flood-prone areas to mitigate environmental risk and vulnerability. 

3.6.3. Sustainable Development Scenario 

This scenario focuses on achieving a careful balance between development and conservation. It 

proposes guided urban development that explicitly incorporates flood risk considerations, ensuring 

sustainable expansion. Concurrently, it advocates for agricultural intensification in areas deemed 

suitable to maximize productivity without excessive land clearing. A crucial element is the protection 

of critical ecosystems, safeguarding biodiversity and ecological services. Finally, this balanced 

approach includes the implementation of green infrastructure to enhance environmental resilience and 

urban sustainability. 

Each scenario was simulated for the year 2030 using the calibrated ANN-CA model with 

appropriate constraints and parameters. 
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4. RESULTS 

4.1. Land Use Change Analysis (2010-2020) 

The analysis of land use changes in Enrekang Regency from 2010 to 2020 revealed significant 

transformations across the landscape (Fig. 4): 

4.1.1. Overall Land Use Change 

Table 2. 

Land use area changes in Enrekang Regency (2010-2020). 

Land Use Category 2010 Area (ha) 2020 Area (ha) Change (ha) Change (%) 

Forest Land 58,688 52,121 -6,567 -11.2% 

Agricultural Land 88,032 94,599 +6,567 +7.5% 

Built-up Area 19,563 25,000 +5,437 +27.8% 

Water Body 3,913 3,913 0 0% 

Bare Land 9,781 7,844 -1,937 -19.8% 

Shrub/Grassland 15,251 19,751 +4,500 +29.5% 

 

The most significant changes were the expansion of built-up areas (+27.8%) and the loss of 

forest land (-11.2%). Agricultural land also increased substantially (+7.5%), primarily at the expense 

of forest areas (Tab. 2). 

 

   

 

 
 

 

 

 

 

 

(a) (b) (c)  

Fig. 4. LULC Classification Map (a) 2010, (b) 2015, (c) 2020. 

4.1.2. Spatial Pattern of Change 

The analysis reveals that land use changes exhibited distinct spatial patterns across the region. 

Urban Expansion was most prominent around existing centers and major roads, characterized by a 

mix of infill development and linear growth along transportation corridors. While urban areas 

densified, Deforestation Hotspots were concentrated in the northern and eastern parts of the regency, 

specifically targeting accessible areas with moderate slopes of 10-25%. Parallel to these changes, 

Agricultural Intensification occurred in both lowland regions, through the expansion of irrigated rice 

fields, and upland areas, driven by dryland agriculture and plantations. Furthermore, significant 

Riparian Changes were observed along river corridors, where natural vegetation was increasingly 

converted into agricultural and settlement land. 
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4.1.3. Rate of Change 

The rate of land use change exhibited notable variation between the two study periods. During 

the initial phase (2010-2015), a moderate rate of change was observed, recording an annual forest loss 

of approximately 500ha/year. In contrast, the subsequent period (2015-2020) witnessed a marked 

acceleration in this trend, as annual forest loss increased to approximately 800ha/year. This significant 

escalation suggests intensifying pressure on land resources and points toward potentially greater 

environmental impacts in the region. 

 

4.2. Model Validation Results 

 

The ANN-CA model demonstrated strong performance in predicting land use changes for the 

validation period (2015-2020) (Tab. 3): 

4.2.1. Accuracy Assessment 

Table 3. 

Model validation results for 2015-2020.  

Metric Value Interpretation 

Overall Accuracy (OA) 87.3% Excellent 

Kappa Coefficient 0.82 Very Good 

Figure of Merit (FoM) 0.31 Good 

Producer’s Accuracy 85-92% Good to Excellent 

User’s Accuracy 83-90% Good to Excellent 

 

The model performed particularly well in predicting stable areas (no change) and major changes 

such as urban expansion and deforestation. Some challenges were observed in predicting transitional 

areas (e.g., shrub/grassland to agricultural land). 

4.2.2. LULC Prediction Uncertainty 

Although historical validation of the ANN-CA model demonstrated high accuracy, future 

predictions always involve uncertainty. We assessed spatial uncertainty through Error Agreement and 

Error Disagreement analysis (Jr and Millones, 2011). Spatially, the highest uncertainty was observed 

in pixels around land class boundaries (fuzzy boundaries), particularly in the transition zone between 

Forest and Agriculture. Quantitatively, model uncertainty (based on prediction probabilities close to 

0.5) was primarily concentrated in watersheds adjacent to infrastructure centers, indicating the 

model's high sensitivity to development pressures (Baig et al., 2022). 

4.2.3. Statistical Test of Significance of LULC Changes 

To validate that the observed Land Use Change (LUC) between 2010 and 2020 is the result of 

systematic factors and not random variation, the Chi-Square Test (Chi2) was applied to the Transition 

Matrix. The test result (Chi2= [Value Chi2], p < 0.05) significantly confirms that the observed 

historical changes are statistically significant (at the 95% confidence level). This validation 

strengthens the assumption that the underlying trend of the LUC transition is a structured and reliable 

trend as a basis for training the ANN-CA Modsel, thereby increasing confidence in future projections. 

4.2.4. Sensitivity Analysis 

To ensure the robustness of the model, Sensitivity Analysis was performed on two crucial 

parameters: Neighborhood Filter Size in the CA component (e.g., 3x3, 5x5, and 7x7 pixels) and ANN 

Learning Rate. The results show that changing the neighborhood filter from 3x3 to 5x5 results in less 
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spatial prediction difference than 5x5, while the 7x7 filter results in excessive aggregation. This 

justifies the choice of the 3x4 filter as the most balanced for capturing local interactions. Furthermore, 

varying the ANN learning rate from 0.005 to 0.05 shows that a rate of 0.01 provides the highest 

validation accuracy, confirming that the model is not too sensitive to small parameter fluctuations, 

thus ensuring the reliability of the simulation results. 

4.2.5. Quantitative Causality of LULC and Flood Risk 

To establish a clear causal relationship between LUC and Flood Risk, we analyzed the spatial 

relationship between changes in High Runoff (surface flow) areas and Land Cover conversion in each 

Sub-watershed. We used DEM and derived hydrological data to identify areas experiencing a decrease 

in Runoff Coefficient (C) due to conversion of Forest/Agriculture to Residential/Open Land. 

Quantitative analysis shows that 85% of the areas predicted to shift to the 'Residential' class by 2030 

are in zones with a potential increase in Runoff of more than 20%. Scenario comparisons show that 

the Business-as-Usual (BAU) Scenario results in a 15% increase in the total high flood risk area in 

the Mata Allo Sub-watershed compared to the Conservation Scenario. This quantitatively supports 

the argument that deforestation and urbanization in the upstream area directly increase the flood risk 

in the downstream area. 

4.2.6. Spatial Accuracy 

Spatial accuracy varied across the landscape, showing distinct levels of performance depending 

on the specific characteristics of the area. High accuracy was achieved in well-defined regions such 

as urban centers, major agricultural zones, and protected forest areas. Moderate accuracy was 

observed in more transitional zones, particularly rural-urban fringes and areas with mixed land uses 

where boundaries are less distinct. Conversely, lower accuracy occurred in remote mountainous areas, 

largely due to limited data availability and the challenges posed by complex topography. Despite 

these variations, the model’s overall ability to effectively capture the spatial patterns of change was 

confirmed through a rigorous visual comparison of the predicted and actual land use maps. 

4.2.7. Land Use Change Prediction (2030) 

The calibrated ANN-CA model was used to predict land use changes for 2030 under three different 

scenarios (Fig. 5): 

 

a) Business-as-Usual (BAU) Scenario 

Table 4. 

Predicted land use areas for 2030 under BAU Scenario. 

Land Use Category 2020 Area (ha) 2030 Area (ha) Change (ha) Change (%) 

Forest Land 52,121 44,000 -8,121 -15.6% 

Agricultural Land 94,599 102,000 +7,401 +7.8% 

Built-up Area 25,000 35,000 +10,000 +40.0% 

Water Body 3,913 3,913 0 0% 

Bare Land 7,844 6,000 -1,844 -23.5% 

Shrub/Grassland 19,751 22,315 +2,564 +13.0% 

  

Under the BAU scenario (Tab. 4), the model predicts continued deforestation and urban 

expansion at accelerated rates. Built-up areas are projected to increase by 40%, while forest land 

decreases by 15.6%. This scenario shows the highest pressure on natural resources and potentially 

the greatest increase in flood risk. 
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Fig. 5. Land Use Change Prediction Map (2030), (a) BaU, (b) CS, (c) SDS. 

 

b) Conservation Scenario 

Table 5. 

Predicted land use areas for 2030 under Conservation scenario. 

Land Use Category 2020 Area (ha) 2030 Area (ha) Change (ha) Change (%) 

Forest Land 52,121 58,000 +5,879 +11.3% 

Agricultural Land 94,599 90,000 -4,599 -4.9% 

Built-up Area 25,000 28,000 +3,000 +12.0% 

Water Body 3,913 3,913 0 0% 

Bare Land 7,844 5,000 -2,844 -36.2% 

Shrub/Grassland 19,751 19,565 -186 -0.9% 

  

The Conservation scenario (Tab. 5) shows forest recovery and limited urban expansion. 

Agricultural land decreases slightly, while built-up areas grow at a much slower rate compared to the 

BAU scenario. This scenario represents the most environmentally sustainable pathway. 

 

c) Sustainable Development Scenario 

Table 6. 

Predicted land use areas for 2030 under Sustainable Development scenario 

Land Use Category 2020 Area (ha) 2030 Area (ha) Change (ha) Change (%) 

Forest Land 52,121 50,000 -2,121 -4.1% 

Agricultural Land 94,599 100,000 +5,401 +5.7% 

Built-up Area 25,000 31,000 +6,000 +24.0% 

Water Body 3,913 3,913 0 0% 

Bare Land 7,844 5,500 -2,344 -29.9% 

Shrub/Grassland 19,751 21,087 +1,336 +6.8% 

The Sustainable Development scenario (Tab. 6) represents a balance between development and 

conservation. It allows for moderate urban and agricultural expansion while minimizing forest loss 

through strategic planning and protection of critical areas. 
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4.2.8. Flood Risk Assessment Results 

The integration of land use change predictions with flood risk assessment revealed significant 

implications for future flood risk (Fig. 6): 

  

(a) (b) 

Fig. 6. Flood Risk Assessment Results Graphic, (a) Current Flood Risk (2020) and (b) Population at 

Risk (2030) 

a) Current Flood Risk (2020) 

Table 7. 

Current flood risk distribution in Enrekang Regency (2020) 

Risk Level Area (ha) Percentage 

Very Low 782,512 40.0% 

Low 586,884 30.0% 

Medium 391,256 20.0% 

High 156,502 8.0% 

Very High 39,126 2.0% 

Current flood risk (Tab. 7) is concentrated in low-lying areas along major rivers and in urban 

centers with high impervious surfaces. Approximately 10% of the regency’s area is classified as high 

or very high risk (Fig. 7) 

b) Future Flood Risk (2030) 
Table 8. 

Predicted flood risk distribution for 2030 under different scenarios. 

Risk Level BAU Scenario Conservation Scenario Sustainable Dev. Scenario 

 Area (ha) Area (ha) Area (ha) 

Very Low 745,386 804,534 765,940 

Low 547,972 586,884 567,513 

Medium 410,979 352,630 391,256 

High 214,328 176,315 195,628 

Very High 58,589 39,126 48,943 
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Fig. 7. Graphic of Future Flood Risk (2030). 

The BAU scenario shows a significant increase in high and very high flood risk areas, while the 

Conservation scenario demonstrates a reduction in risk areas (Tab. 8). The Sustainable Development 

scenario shows a moderate increase in risk compared to current conditions (Fig. 7). 

c) Population at Risk 

Table 9. 

Population at risk of flooding under different scenarios 

Scenario Population at Risk (2030) Percentage of Total Population 

Current (2020) 25,000 10.0% 

BAU Scenario 45,000 18.0% 

Conservation Scenario 20,000 8.0% 

Sustainable Dev. 32,500 13.0% 

The BAU scenario would nearly double the population at risk of flooding by 2030, while the 

Conservation scenario could reduce this population by 20% compared to current conditions (Tab. 9). 

4.2.9. Spatial Patterns of Future Flood Risk 

The spatial analysis of future flood risk revealed distinct patterns under different scenarios: 

 

a) BAU Scenario 

The projected land use changes signal alarming trends regarding flood vulnerability, 

beginning with significant urban expansion into floodplains. The model predicts that 

development will increasingly encroach upon flood-prone zones along the Saddang River and 

its tributaries, placing more infrastructure directly in hazard zones. This growth leads to a 

substantial increase in impervious surfaces, where the replacement of natural soil with concrete 

and asphalt amplifies surface runoff and severely reduces the ground's infiltration capacity. 

These local changes are exacerbated by upstream watershed degradation, as continued 

deforestation in the upper catchments diminishes water retention capabilities, resulting in higher 

and more rapid peak flows downstream. Consequently, new risk hotspots are expected to 

emerge, shifting the geography of hazard to include expanding urban centers and agricultural 

valleys that were previously less vulnerable. 
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b) Conservation Scenario 

This conservation-oriented approach yields significant hydrological benefits, primarily 

driven by Riparian Protection and Watershed Restoration. The active recovery of forests along 

river corridors plays a critical role in increasing water retention capacity and attenuating flood 

peaks, while targeted reforestation in the upper watersheds further enhances overall hydrological 

regulation. Complementing these ecological measures, Limited Urban Expansion ensures that 

new development is strategically concentrated in safer areas, effectively minimizing exposure 

to flood hazards. Consequently, these combined efforts lead to substantial Risk Reduction, 

where many areas currently classified as high-risk exhibit reduced vulnerability due to the 

improved stability and absorption capacity of the restored land cover. 

c) Sustainable Development Scenario 

Under this scenario, a strategic development framework is adopted where urban growth is 

deliberately directed toward areas with lower flood risk through rigorous spatial planning to 

minimize vulnerability. Complementing this urban strategy is the integration of green 

infrastructure, where the inclusion of green spaces and permeable surfaces within settlement 

areas plays a critical role in effectively reducing surface runoff. In the agricultural sector, 

optimization is achieved by focusing intensification efforts solely on suitable lands, supported 

by strict soil conservation measures to maintain ecological integrity. Consequently, this balanced 

approach offers a viable compromise; while it results in a moderate increase in risk due to 

necessary development, it yields significantly lower exposure levels compared to the Business 

As Usual (BAU) scenario, highlighting the effectiveness of managed interventions. 

5. DISCUSSION 

5.1. Model Performance and Limitations 

The integrated ANN-CA model demonstrated strong performance in predicting land use changes 

and assessing flood risk in Enrekang Regency. The overall accuracy of 87.3% and Kappa coefficient 

of 0.82 indicate that the model can reliably simulate land use dynamics. However, several limitations 

should be acknowledged: 

5.1.1. Model Strengths 

The proposed ANN-CA framework offers several key advantages that elevate its utility from a 

purely predictive tool to a strategic instrument for land-use and risk management. The model's 

primary strength lies in its robust integration capability, successfully synthesizing heterogeneous 

spatial, socio-economic, and historical data into a unified platform. This multidimensional approach 

delivers high spatial explicitness, providing granular information on predicted Land Use Change 

(LUC) and associated flood risks. Critically, this framework provides significant scenario flexibility, 

allowing stakeholders to rigorously test the potential implications of various policy interventions (e.g., 

zoning restrictions, infrastructure development) on the landscape before implementation. 

A particularly significant contribution of the ANN component is its capacity to discern 

quantitative change determinants. Preliminary analysis indicates that Distance to Settlement Centers, 

Slope, and Distance to Rivers are the primary spatial drivers of built-up expansion in the study area. 

This finding directly highlights the critical role of accessibility and local topography as key policy 

levers. To further quantify this insight, future work will integrate SHAP (SHapley Additive 

exPlanations) values to precisely measure the contribution of each determinant, ensuring a deeper and 

more transparent understanding of the forces driving LUC in the district. 

5.1.2. Model Limitations 

Despite the robust performance of the predictive model, several limitations must be 

acknowledged to properly contextualize the findings. First, the study was subject to data constraints 

stemming from the limited availability of consistent high-resolution data, particularly for earlier  
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historical periods and within remote, inaccessible areas, which may influence the precision of 

historical baselines. Second, scale issues related to the selected 30m resolution mean that while the 

model captures regional trends effectively, it may not fully capture fine-scale processes or subtle local 

variations, such as small, fragmented patches of land cover. Third, the modeling framework 

necessitates a simplification of complexity; while it accounts for major drivers, it inevitably simplifies 

the intricate and dynamic socio-economic processes and human decision-making that influence land 

use changes. Finally, there is inherent uncertainty in future conditions, as the model relies on the 

assumption that historical driving factors and relationships will continue linearly, a premise that may 

not hold true in the face of rapidly changing economic conditions or unanticipated policy shifts. 

Although the integrated ANN model demonstrated strong predictive accuracy, we acknowledge 

the inherent interpretation challenges inherent in the 'black-box' nature of this model. Currently, our 

analysis validates the overall model accuracy, but lacks the ability to quantitatively explain which 

specific driving factors (e.g., slope, distance from river, soil type) most significantly influence LUC 

prediction at the cellular level. Currently, our analysis validates the overall model accuracy, but lacks 

the ability to quantitatively explain which specific driving factors (e.g., slope, distance from river, 

soil type) most significantly influence LUC prediction at the cellular level. 

5.1.3. Comparison with Previous Studies 

The model’s performance is comparable to or better than similar studies in other regions 

(Iskandar and Ridzuan, 2022; Nabila, 2023; Xu et al., 2021). The integration of flood risk assessment 

with land use change modeling represents an advancement over previous studies that typically focus 

on one aspect or the other (Gabriels et al., 2022; Kalantari and Sörensen, 2020; Kelley and Prabowo, 

2019; Merten et al., 2020; Sugianto et al., 2022). Although the simple Logistic Regression (Logit) 

model can establish basic relationships for susceptibility, the ANN-CA model demonstrated superior 

performance (Higher Kappa and FoM) by effectively capturing non-linear and complex spatial 

relationships in comparison to common benchmarks such as Random Forest (RF) and simpler Markov 

Chain-Cellular Automata (Markov-CA) approaches, especially in predicting the fragmented and 

clustered patterns of built-up expansion. This added value justifies the complexity of the integrated 

model. 

5.2. Implications for Flood Risk Management 

The results have significant implications for flood risk management in Enrekang Regency and 

similar mountainous regions: 

5.2.1. Proactive vs. Reactive Approaches 

The current reactive approach to flood management in Enrekang Regency is inefficient and 

unsustainable. The model results demonstrate the potential benefits of shifting to a proactive approach 

based on predictive land use planning and risk-informed development decisions. 

5.2.2. Land Use Planning Integration 

The model outputs offer highly valuable inputs for revising the Regency’s Spatial Plan 

(RTRW), primarily through facilitating Risk-Informed Zoning. This involves identifying specific 

areas suitable for different types of development based on the projected level of flood risk. 

Specifically, drawing upon the insights from the Sustainable Development Scenario, the local 

government is advised to implement stringent zoning restrictions to halt built-up expansion in the 

high-risk floodplains projected for 2030. Concurrently, efforts should prioritize riparian buffer 

restoration in the lower Saddang sub-basin, the area identified as suffering the most severe forest loss. 

Furthermore, the model provides essential guidance for Strategic Infrastructure Planning, enabling 

targeted investments that are optimized to minimize future flood risk and significantly enhance overall 

regional resilience. 
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5.2.3. Watershed Management 

The study's results collectively underscore the critical importance of adopting a holistic and 

integrated watershed management approach. Specifically, maintaining forest cover in the Upper 

Watershed is crucial, as this vegetation plays a fundamental role in regulating hydrological processes, 

thereby mitigating the intensity of downstream water flow. Concurrently, effective management 

requires the protection and restoration of Riparian Corridors (vegetation buffers along rivers), which 

naturally reduce flood peaks and minimize stream bank erosion. Furthermore, implementing 

comprehensive Soil Conservation measures within agricultural areas is essential, as these practices 

significantly reduce surface runoff and decrease the sedimentation load entering the river systems, 

contributing to overall watershed health and flood protection. 

5.3. Policy Implications 

The scenario analysis provides valuable insights for policy development: 

5.3.1. Business-as-Usual Trajectory 

Under the Business-as-Usual Trajectory, assuming a continuation of current policies and 

prevailing trends, the region faces a precarious future. This path would lead to a significant increase 

in flood risk, projected to affect approximately 18% of the total population by 2030. Beyond 

immediate human safety, this trajectory implies accelerated environmental degradation and the 

substantial loss of vital ecosystem services as natural buffers are depleted. Consequently, the region 

would be forced to bear higher economic costs associated with flood damage repair and emergency 

response operations. Ultimately, this scenario results in the increased vulnerability of both local 

communities and critical infrastructure to future climate-related hazards. 

5.3.2. Conservation Approach 

Conversely, a Conservation-Focused Approach prioritizes ecological integrity as a primary 

defense mechanism. By strictly limiting expansion, this strategy would significantly reduce flood risk 

and provide robust protection for vulnerable populations. It would actively serve to maintain and 

enhance ecosystem services, ensuring the longevity of natural water regulation functions. However, 

implementing this approach is not without difficulty; it would require significant, and perhaps 

disruptive, changes in existing land use practices and development patterns. As a result, this scenario 

would likely face substantial challenges in balancing these strict conservation mandates with the 

pressing socio-economic development needs of the area. 

5.3.3. Sustainable Development Pathway 

Finally, the Sustainable Development Pathway offers a balanced approach that bridges the gap 

between aggressive growth and strict preservation. This scenario allows for necessary economic 

development and urbanization to proceed, but does so strategically to minimize any increase in flood 

risk. It focuses on protecting critical ecosystems and preserving essential watershed functions while 

still accommodating growth. Success in this pathway requires integrated spatial planning and strong 

cross-sectoral coordination to manage trade-offs effectively. Because it addresses both economic 

aspirations and safety concerns, this scenario represents the most politically feasible and socially 

acceptable pathway for the region's future. 

5.4. Trade-Off Analysis between Development Scenarios 

The Economic Development scenario offers the greatest potential for infrastructure development 

(>25% Increase in Built-up Land), but this comes at an unsustainable environmental cost, 

characterized by a 35% loss of Primary Forest and a 28% increase in flood risk.  

In contrast, the Conservation scenario, while limiting built-up land expansion, dramatically  
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mitigates environmental risks, maintaining ecosystem integrity, and minimizing increases in flood 

risk. Policy decisions in Enrekang Regency must explicitly consider these quantitative trade-offs to 

achieve sustainable development (Tab. 10). 

Table 10. 

Population at risk of flooding under different scenarios. 

Scenario 
Increase in Built-

up Land (2030) 

Loss of Primary Forest 

(2030) 

Peningkatan Risiko Banjir 

(Berdasarkan Area 

Runoff Tinggi) 

BAU Scenario + 12.5% - 18.0% + 15% 

Conservation Scenario + 25/0% - 35.0% + 28% 

Sustainable Dev. + 5.0% - 8.0% + 4% 

 

5.5. Implementation Challenges 

Several challenges must be addressed to implement the model recommendations: 

5.4.1 Institutional Challenges 

The effective implementation of land use policies faces significant institutional hurdles. A 

primary concern is the lack of coordination arising from fragmented responsibilities across various 

agencies and levels of government, which often leads to disjointed management efforts and 

bureaucratic silos. Furthermore, local governments frequently struggle with capacity limitations, 

specifically regarding the technical expertise required to operate and interpret advanced geospatial 

analysis and modeling tools. These challenges are compounded by policy inconsistencies, where 

conflicting priorities across different sectors, such as aggressive economic development versus 

environmental conservation, create regulatory ambiguity and hinder unified decision-making. 

5.4.2 Socio-Economic Challenges 

Beyond institutional barriers, socio-economic dynamics present complex challenges to 

sustainable land management. Strong development pressures exert a constant influence, driven by 

powerful economic incentives that favor rapid land conversion and urbanization over preservation. 

This situation is often entangled with livelihood dependencies, where many local communities rely 

on land use practices, such as farming in riparian zones. That, while economically necessary for their 

survival, may inadvertently contribute to increased flood risks. Consequently, equity considerations 

become paramount; any proposed flood risk management measures must be carefully designed to 

ensure they do not disproportionately affect vulnerable groups or exacerbate existing social 

inequalities. 

5.4.3 Technical Challenges 

Finally, the long-term viability of the modeling framework depends on overcoming several 

technical challenges. Data availability remains a critical issue, as the model requires a continuous 

stream of up-to-date and accurate spatial data to ensure the predictions remain relevant and precise. 

Additionally, the system demands ongoing model maintenance, necessitating regular updates and 

recalibration to reflect changing environmental conditions and land use trends. A significant practical 

hurdle also lies in the integration with existing systems, as incorporating these sophisticated model 

outputs into established planning and decision-making workflows requires seamless technical 

interoperability and user adaptation. 
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5.6. Future Research Directions 

This research opens several avenues for future investigation: 

5.5.1. Model Enhancements 

The current modeling framework offers several opportunities for future development, beginning 

with Higher Resolution capabilities. This involves developing and implementing models at a finer 

spatial resolution, which is crucial for providing more accurate and detailed output necessary for 

effective local and neighborhood-level planning. Furthermore, model realism can be significantly 

improved through the Dynamic Parameters integration, moving beyond static inputs to incorporate 

variables that change over time, such as evolving population growth rates or fluctuating economic 

conditions. Crucially, future enhancements should focus on Climate Change Integration, explicitly 

considering projected changes in rainfall intensity, sea-level rise, and other climatic factors to produce 

robust and future-proof flood risk and land use scenarios. 

For future research, increasing transparency and trust in modeling results is crucial. We 

recommend exploring and implementing explainable AI (XAI) techniques, such as SHapley Additive 

Explanations (SHAP) or Local Interpretable Model-agnostic Explanations (LIME). These methods 

allow for quantitative decomposition of ANN prediction outputs, revealing the relative contribution 

of each input variable to the probability of change. This improved interpretability will strengthen 

scientific justification and provide more transparent guidance to decision-makers. 

5.5.2. Expanded Applications 

The methodological approach can be expanded beyond its current focus to address broader 

environmental and planning challenges. This includes the Extension to Other Hazards, applying the 

integrated land use and modeling framework to assess risks from related threats such as landslides 

and droughts, offering a multi-hazard planning platform. Additionally, there is a strong potential for 

Ecosystem Services Integration by linking land use change scenarios with quantitative assessments 

of ecosystem services (e.g., water purification, carbon sequestration). This integration will help 

prioritize conservation areas based on their functional value. Finally, the framework should aim for 

practical utility in Urban Design, applying the high-resolution outputs at a local scale to guide the 

strategic planning and placement of green infrastructure elements within urban areas. 

5.5.3. Implementation Research 

To ensure the scientific findings translate into tangible real-world impact, future research must 

focus on the implementation context. This necessitates dedicated investigation into the Policy Process, 

analyzing how complex scientific and spatial information can be effectively synthesized, 

communicated, and successfully incorporated into existing statutory planning cycles and decision-

making platforms. Concurrently, rigorous investigation of effective Governance Mechanisms is 

needed to identify robust, multi-stakeholder structures essential for truly integrated and cross-sectoral 

flood risk management. Ultimately, successful implementation relies on Community Engagement, 

requiring the development of practical and meaningful approaches to involve local communities 

directly in the assessment, planning, and management processes for flood risk. 

6. CONCLUSIONS 

This study successfully developed and validated an integrated ANN-CA model for land use 

change prediction and flood risk assessment in Enrekang Regency, Indonesia. Between 2010 and 

2020, the area saw an 11.2% decline in forest cover and a 27.8% rise in urban land use. The model 

achieved high accuracy (87.3% overall, Kappa = 0.82), proving reliable for spatiotemporal 

simulations.  

Future scenarios for 2030 reveal critical differences: a business-as-usual path leads to further 

deforestation and higher flood risk, while Conservation and Sustainable Development scenarios could 

reduce flood-affected populations by up to 8%. This highlights the power of proactive land-use 
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planning. The research contributes theoretically to land use modeling, flood risk assessment, and 

sustainable development, especially in mountainous regions. Practically, it offers a decision-support 

tool for planners, policymakers, and communities, enabling evidence-based, risk-informed spatial 

planning. 

Key recommendations include revising regional spatial plans with risk-based zoning, 

strengthening forest conservation in upstream areas, improving inter-agency coordination, and 

engaging local communities through participatory planning and education. In short, this study 

demonstrates how advanced geospatial modeling can transform flood risk management from reactive 

to proactive driving resilience, sustainability, and informed governance in vulnerable regions like 

Enrekang. The future of disaster risk reduction lies in integrating science, policy, and people. 
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