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ABSTRACT

Flood disasters in Enrekang Regency, South Sulawesi Province, have caused significant material losses
and disrupted community activities due to the region’ s unique geographical characteristics with
undulating and mountainous topography. The Saddang River, as one of the main rivers in South
Sulawesi, flows through this area, making it highly vulnerable to flooding, especially during the rainy
season. Rapid land cover changes due to human activities such as settlement expansion, agriculture,
and deforestation have increasingly elevated flood risks. Land conversion from forests to agricultural
and settlement areas reduces water absorption capacity and increases surface runoff. Currently, flood
management in Enrekang Regency remains reactive, with budgets allocated more for post-disaster
response than for mitigation and prevention. This research develops an integrated Artificial Neural
Network Cellular Automata (ANN-CA) model for land use change prediction and flood risk mitigation.
The model integrates remote sensing technology, ANN-CA modeling, and Geographic Information
Systems (GIS) to predict future land use changes and identify high flood-risk areas. The methodology
involves satellite image acquisition (2010-2020), land cover change extraction, ANN training, CA
configuration, model validation (Accuracy >85%, Kappa >0.8), and integration with flood risk factors.
Results show that the model can effectively predict land use changes with high accuracy, providing
valuable spatial information for flood mitigation planning. The predicted land use map for 2030
indicates significant expansion of built-up areas in flood-prone zones, necessitating immediate policy
interventions. This research contributes to the development of predictive and preventive flood
management approaches, offering a scientific basis for spatial planning and disaster risk reduction in
mountainous regions.

Keywords: Artificial Neural Network, Land use change prediction; Flood risk mitigation; Remote
sensing; Spatial analysis.

1. INTRODUCTION

1.1. Background

Enrekang Regency, located in South Sulawesi Province, Indonesia, possesses unique
geographical characteristics with undulating and mountainous topography (Uca et al., 2023, 2018).
The region is traversed by the Saddang River, one of the major rivers in South Sulawesi, making it
particularly vulnerable to flooding during rainy seasons (Rachmayanti et al., 2022; Uca et al., 2021).
Historical data indicates that floods in Enrekang Regency have caused substantial material losses and
disrupted community activities, affecting both urban and rural areas. Rapid land cover changes
resulting from human activities such as settlement expansion, agricultural development, and
deforestation have increasingly exacerbated flood risks (Uca et al., 2018). The conversion of forest
land to agricultural and settlement areas reduces water absorption capacity (Farhan et al., 2024) and
increases surface runoff, amplifying flood potential (Nugraheni et al., 2022). The agrarian crisis and
ecological disasters in the Latimojong Mountains, which fall within Enrekang Regency, have further
worsened this condition.
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Current flood management approaches in Enrekang Regency remain predominantly reactive,
with budget allocations favoring post-disaster response over mitigation and prevention. This approach
is inefficient both economically and socially, highlighting the need for innovative predictive and
preventive solutions (Rajeev and Singh, 2016). Recent advances in geospatial technologies and
modeling approaches offer new opportunities for flood risk mitigation (Sudiana et al., 2025). The
integration of remote sensing, Artificial Neural Network Cellular Automata (ANN-CA), and
Geographic Information Systems (GIS) has shown promise in predicting land use changes and
assessing flood risks (Xu et al., 2021; Yang et al., 2025). These technologies enable the development
of comprehensive models that can simulate future land use scenarios and identify areas at high risk
of flooding (Singh et al., 2021). Land Use Change (LUC) modeling has evolved from conventional
statistical methods to the utilization of advanced Machine Learning (ML) and Deep Learning (DL)
algorithms. Alternative approaches, such as Random Forest (RF) and Support Vector Machine
(SVM), have proven highly effective for LUC classification and prediction, often exhibiting superior
classification accuracy compared to traditional methods (Asif et al., 2023; Mutale et al., 2024).
Furthermore, Deep Learning models like Convolutional Neural Network (CNN), and hybrid models
such as CNN-LSTM, offer advanced capabilities in extracting hierarchical spatio-temporal features,
making them robust for dynamic LUC prediction and capturing complex non-linear relationships (Lei
et al., 2025; Varma et al., 2024).

However, while these ML/DL models excel in pattern recognition and quantity prediction, they
inherently face challenges in simulating explicit spatial processes, cellular interactions, and directly
integrating external policy constraints or scenarios into the transition mechanism. To overcome these
limitations and provide an application-oriented framework suitable for policy intervention, this
research selects the integrated Artificial Neural Network -Cellular Automata (ANN-CA) Model.

ANN-CA provides an optimal hybrid solution: the ANN effectively maps the non-linear
relationship between various driving factors (e.g., topography, hydrology, and socio-economics) and
LUC transition probabilities, while the Cellular Automata (CA) component is uniquely capable of
applying localized transition rules, neighborhood effects, and crucial policy/scenario constraints at
the pixel level (Khan and Khan, 2025; Tharik et al., 2025). This integration is vital as it allows the
model to not only predict what changes but also to simulate where those changes occur under specific
planning conditions, a capability essential for scenario-based flood mitigation and proactive spatial
planning in the mountainous context of Enrekang Regency.

This research addresses the critical gap in flood management by developing an integrated ANN-
CA model for land use change prediction specifically tailored for flood mitigation in Enrekang
Regency. Current flood management practices often lack the predictive capabilities needed for
proactive risk reduction. Therefore, the model aims to provide decision-makers with robust spatial
information and predictive insights to support proactive flood risk reduction strategies. The
subsequent sections will provide the necessary background, critically reviewing existing research and
debates relevant to integrated land use modeling and flood risk, thereby highlighting the gaps that this
study aims to fill and setting the stage for the research objectives.

1.2. Research Gap

While numerous studies have addressed Land Use Change (LUC) modeling and flood risk
assessment independently, there remains a significant limitation in their integration, especially for
mitigation purposes in complex mountainous regions such as Enrekang Regency (Gabriels et al.,
2022; Iskandar and Ridzuan, 2022; Merten et al., 2020). Previous studies have often focused on urban
flood risk assessment or general land use change prediction without specific consideration for flood
mitigation applications. This research specifically addresses three critical gaps: (1) The limited
integration of the Artificial Neural Network-Cellular Automata (ANN-CA) model with flood risk
factors in challenging geographical contexts. (2) The insufficient comprehensive validation of
predictive LUC models for flood risk applications in developing countries. (3) The lack of translating
predictive modeling outcomes into actionable spatial policy recommendations that local governments
can readily implement.
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1.3. Research Objective

The main objective of this research is to develop and validate an integrated ANN-CA model for
predicting land use changes up to the year 2030 in Enrekang Regency, with explicit consideration of
flood risk factors. The resulting predictions will be utilized to formulate spatial recommendations that
support flood mitigation efforts. The significant contribution of this study is providing a predictive
and preventive scientific basis for spatial planning and disaster risk reduction. By integrating
advanced computational modeling with disaster risk assessment in a vulnerable region, this research
offers valuable insights for more effective and sustainable decision-making.

2. STUDY AREA

Enrekang Regency is located in South Sulawesi Province, Indonesia, between 3°14” - 3°50” South
Latitude and 119°40° - 120°06’ East Longitude (Fig. 1.). The regency covers an area of approximately
1,956.28 km? with a population of around 250,000 people.

The topography of Enrekang Regency is characterized by mountainous terrain with elevations
ranging from 50 to 3,478 meters above sea level. The Saddang River and its tributaries form the main
drainage system, flowing through the regency from north to south. The region experiences a tropical
climate with average annual rainfall ranging from 2,000 to 3,000 mm, concentrated mainly in the
rainy season (November to April).

Land use in Enrekang Regency is dominated by agricultural land (45%), forest areas (30%),
settlement areas (10%), and other uses (15%) (Uca et al., 2023). Recent decades have seen significant
land use changes, particularly the conversion of forest land to agricultural and settlement areas,
contributing to increased flood risks.

Enrekang Regency was selected as a case study because it represents critical and complex
conditions: steep mountainous topography, a sensitive watershed system (Saddang River), and rapid
land use change (LUC). The performance of the integrated ANN-CA model in this region is strongly
influenced by key local parameters trained as network inputs: (1) Elevation and Slope, which
constrain LUC and accelerate surface runoff; (2) Proximity to the Saddang River, which drives
settlement expansion into risk zones; and (3) Accessibility, which is a main driver of development
patterns. This approach is generalizable to other mountainous regions with watersheds sensitive to
LUC changes (e.g., critical watersheds in Indonesia). This generalization requires recalibration of the
ANN input weights and CA transition rules to match the specific LUC driving parameters of the new
location (e.g., soil type or local spatial planning policies). The model offers a flexible framework that
necessitates local adjustment for accurate results.

3. DATA AND METHODS

3.1. Remote Sensing Data

Satellite imagery from multiple sources was collected to analyze land use changes in Enrekang
Regency:

1) Landsat Imagery: Landsat 5 Thematic Mapper (TM) (2010), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) (2015), and Landsat 8 Operational Land Imager (OLI) (2020), all with
a 30-meter spatial resolution. These datasets were accessed from the United States
Geological Survey (USGS) Earth Explorer archive, an open-access repository.

2) Sentinel-2 Imagery: High-resolution data from Sentinel-2A and Sentinel-2B missions (2020)
with a 10-meter spatial resolution for visible and near-infrared bands, obtained from the
European Space Agency's Copernicus Open Access Hub. This dataset was used to improve
classification accuracy in the 2020 land cover mapping. Sentinel-2 data was used as a high-
resolution reference to improve the classification accuracy of our 2020 Land Use Map (as
the historical end year), thereby increasing the reliability of the transition matrix. However,
30m resolution was maintained as the operational resolution of the ANN-CA Model to ensure
long-term spatial consistency with Landsat data (2010, 2015) and the 30m DEM.
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3) Digital Elevation Model (DEM): The Shuttle Radar Topography Mission (SRTM) 30-meter
DEM was used for topographic analysis, including slope and elevation modeling. SRTM
data is an open-source dataset developed by NASA and available through USGS Earth
Explorer.

All satellite images were subjected to comprehensive pre-processing to ensure data consistency
and analytical accuracy. This included radiometric calibration, atmospheric correction (using
Sen2Cor for Sentinel-2 and FLAASH/LEDAPS for Landsat), and geometric correction using ground
control points and TRIM reference data. The integration of these open datasets aligns with the
recommended use of globally accessible geospatial resources such as those endorsed by open science
initiatives and Earth observation programs.
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Fig. 1. Research Location Map (Enrekang Regency, South Sulawesi, Indonesia).
3.2. Ancillary Data

To support the modeling process, various additional data layers were collected (Tabel 1). These
included Topographic Data (such as slope, aspect, and curvature derived from the DEM),
Hydrological Data (comprising river networks, watershed boundaries (Fig. 2), and flood history
records), and Infrastructure Data (covering road networks, settlement locations, and administrative
boundaries). Furthermore, Socio-economic Data was gathered, including statistics on population
density, land values, and agricultural productivity (BPS Enrekang, 2025, 2021, 2016, 2011). All
collected data were subsequently processed and integrated into a consistent spatial reference system,
namely WGS 84 UTM Zone 508, and resampled to a common spatial resolution of 30m.

3.3. Land Use Classification
3.3.1. Land Use Classification and Feature Exztraction

Land use classification was conducted using a supervised classification approach which involved
several steps (Fig. 3). First, Training Sample Collection was performed by gathering ground truth
points through field surveys and interpretation of high-resolution imagery. The classification itself
was executed using the Support Vector Machine (SVM) algorithm for its known effectiveness in
handling complex spectral signatures.



55

Table 1.
Data Used.
Data Specification Source Objective
Landsat Imagery | Landsat 5 Thematic USGS Historical Input Data and Multi-temporal
Mapper (TM) (2010) EarthExplorer Feature Extraction. Used to: 1) Map Land
Landsat 7 Enhanced https://earthexplor | Use in 2010 and 2015 (to train the time-
Thematic Mapper Plus er. usgs.gov series model). 2) Calculate the LUC
(ETM+) (2015) Landsat 8 Transition Matrix (a key multi-temporal
Operational Land Imager feature). 3) Set the model to a 30m
(OLI) 2020).All in 30m operational resolution for long-term
resolution with <10% consistency.
cloude cover
Sentinel-2 S2A Mission with 10m Copernicus Classification Accuracy Improvement. Used
Imagery resolution and <10% Browser to: 1) Improve the accuracy and detail of the
cloud cover https://browser.dat | 2020 Land Use Map (as a validated final
aspace.copernicus | year baseline map). 2) Ensure the most up-
.eu to-date and accurate LUC classification as
input to the Transition Matrix.
Digital USGS EROS Archive - | USGS Extraction of Topographic Driving Factors.
Elevation Digital Elevation - Shuttle | EarthExplorer Used to: 1) Provide baseline elevation data.
Model (DEM) | Radar Topography https://earthexplor | 2) Serve as a basis for generating driving
Mission (SRTM) 1 Arc- | er .usgs.gov factors (such as slope and aspect) that will be
Second Global used as input variables for the ANN Model.

https://tanahair.in
donesia. go.id

Topographic Extraction from | LULC Driving Factors. Used as independent
Data DEM data input variables in ANN training to model
how elevation, slope, and aspect affect the
probability of land use change.
Hydrological Extraction from | Water-related LULC Driving Factors. Used
Data DEM data as independent input variables in ANN
training to model the influence of hydrology
(e.g., distance from rivers, drainage density)
on land use change, which is important for
flood risk.
Infrastructure 30m resoution and 10m | Integrated data of | Anthropogenic/Policy Driving Factors. Used
Data resolution data extraction | Classification to: 1) Measure proximity to roads and
1:50000 Scale for Vector | Map and Vector | settlements (as driving factors for human
data data from Ina- activity). 2) Integrate spatial constraints or
Geoportal CA rules based on infrastructure location.

Socio-economic
Data

Statistical Data for each
region

Book Report of
Badan Pusat
Statistik (Central
Bureau of
Statistics) 2010,
2015, 2020, and
2025

Non-Spatial Driving Factors and Regional
Scale Validation. Used to: 1) Provide non-
spatial variables (e.g., population density,
economic growth) that may influence the
LUC transition probability. 2) Control the
total macro growth of the study area in the
CA Model simulation.
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For the classification model, we used six standard Landsat feature bands: Blue (B2), Green (B3),
Red (B4), Near Infrared (NIR, BS5), Shortwave Infrared 1 (SWIR1, B6), and Shortwave Infrared 2
(SWIR2, B7). In addition, we included two derived spectral indices, the Normalized Difference
Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI), to improve class
discrimination.  Six major Land Use Categories were identified for mapping: Forest Land,
Agricultural Land, Built-up Land, Water Body, Bare Land, and Shrub/Grassland. Finally, an
Accuracy Assessment was performed using a confusion matrix, which demonstrated robust results,
with the overall accuracy exceeding 90% and the Kappa coefficient scoring above 0.85. The resulting
classification maps for the years 2010, 2015, and 2020 were then utilized to analyze land use change
patterns and trends.
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Fig. 2. The DEM/Hillshade and Watersheds within Enrekang Regency.

3.3.2. Land Use Classification and Feature Exztraction

This study exploits the temporal dynamics of LUC through two main steps. First, we perform a
change detection analysis between the 2010, 2015, and 2020 land use maps. Second, the results are
used to extract the LUC Transition Matrix (Land Use Change Transition Matrix). This matrix is a
fundamental multi-temporal feature that is fed into the ANN training. By training the ANN on
probabilities derived from actual changes between time periods, the model implicitly learns the
sequence and historical trend of LUC transitions (e.g., Forest to Agriculture or Agriculture to
Settlement). Although we do not use an explicit sequential model such as LSTM, this approach
enables CA-based modeling to drive future change dynamics based on multi-temporal trends observed
from Landsat data.

Sampling and Validation Sampling was conducted using stratified random sampling for each
LUC class. A total of 450 samples (training points) were collected for each LUC map year, verified
using Very High Resolution (VHR) imagery Sentinel-2 imagery from 2020. These samples were
divided into two sets: Training Sample: 80% of the total samples (360 samples) were used to train the
algorithm. Validation Sample: 20% of the total samples (90 samples) were used to test the accuracy



57

of the generated maps. The accuracy of the LUC maps was validated using a Confusion Matrix Table,
which includes Overall Accuracy and Kappa Coefficient metrics. The Confusion Matrix results for
each year are presented in detail in Section 4.1 (Classification Results). The minimum accuracy
requirement is Kappa > 0.8 to ensure reliable historical LUC maps as input for the ANN-CA model.
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Fig. 3. Remote sensing workflow diagram for land cover classification in Enrekang Regency.

3.4. ANN-CA Model Development
The integrated ANN-CA model was developed with several components

3.4.1. Artificial Neural Network (ANN) Component

The Artificial Neural Network (ANN) component was specifically designed to predict land use
change probabilities by incorporating multiple driving factors. The model utilized eight input
variables: distance to roads, distance to rivers, distance to settlement centers, elevation, slope,
population density, land use in the previous period, and policy constraints (protected areas). The
Network Architecture consisted of an input layer with eight neurons (one for each variable), a hidden
layer containing 15 neurons using a sigmoid activation function, and an output layer with six neurons
corresponding to the change probability for each land use category. The Training Process applied the
backpropagation algorithm with a learning rate of 0.01. Training data was derived from the observed
land use changes between 2010-2015 and 2015-2020. To ensure model reliability, 20% of the samples
were reserved as validation data, and the training was stopped once the validation error had stabilized.

Number of Hidden The number of neurons was determined empirically through a

Neuorns (15) trial-and-error process to achieve the highest model validation
accuracy (Kappa > 0.8) while minimizing training time. This
number approximates half of the number of input features
(approximately 30 driving factors). This heuristic approach is
widely adopted in ANN-CA research to balance the model's
learning capacity and prevent overfitting (Razavi, 2014; Wang
etal., 2021)
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Learning Rate (0.01) This value was chosen after optimization to ensure stable and
efficient convergence of the loss function. An excessively high
rate (e.g., 0.1) risks causing oscillation, while a lower rate
significantly slows down the training process. A value of 0.01
is common and proven effective in many ANN-based LUC
modeling studies for achieving timely and accurate
convergence (Ouma et al., 2024; Zhang et al., 2022)

Training Literations This value was selected because testing results indicated that

(500) the model reached its optimal convergence point (the decrease
in the loss function became minimal) at or before the 500
iteration, thus preventing unnecessary computational waste
caused by excessive iteration. (Razavi, 2014)

3.4.2. Cellular Automata (CA) Component

The CA component simulates spatial dynamics of land use changes based on transition rules
derived from the ANN:
Transition Rules:

1

t _
Pij T 14e G

€]
where:

Pl-tj is the probability of cell (i,j) changing to a particular land use type at time t

z;; is the weighted sum of input factors for cell (i,})

Neighborhood Effect: The influence of neighboring cells was calculated using a 3x3 kernel:

con(cell;j=k
,211;] Y3x3 ( ij ) (2)
where:
.Qlt] is the neighborhood effect for cell (1,_]) at time t

con( ) is a conditional function that returns 1 if the condition is true, 0 otherwise

Combined Probability: The final transition probability combines ANN output and
neighborhood effect:
t _ pt t
TP, = P;; x (1+ 0};) x RAND 3)
where:
TPit]- is the final transition probability

RAND is a random factor between 0.5 and 1.5 to introduce stochasticity
Selecting this range [0.5, 1.5] is standard practice in CA modeling to introduce a
moderate level of uncertainty (up to 50 probabilistic changes). This is done to
prevent the model from becoming too deterministic, so that the simulation results
are more realistic and closer to the spatial distribution of naturally occurring land
use changes (Xu et al., 2023).

3.4.2. Model Calibration and Validation

The process of using 2010-2015 data for calibration and predicting the 2020 map for validation
serves as a hindcasting approach, confirming the model's ability to accurately project future states
before simulating the final 2030 scenario. The hyperparameter tuning for the ANN-CA model
involved an iterative process where the learning rate (fixed at 0.01) and the spatial weightings within
the 3x3 CA neighbourhood kernel were optimized using a genetic algorithm to maximize the Figure
of Merit (FoM). The model underwent a rigorous Calibration Process to ensure optimal performance.
This involved parameter optimization utilizing genetic algorithms, followed by a sensitivity analysis
to accurately identify the most influential parameters affecting the simulation outcome. An iterative
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adjustment process was then carried out to closely match the model's output with historical land use
change patterns. The model's reliability was assessed using several Validation Metrics, including
Overall Accuracy (OA), which measures the proportion of correctly predicted cells; the Kappa
Coefficient, which gauges agreement beyond chance; and the Figure of Merit (FoM), which
specifically evaluates the model's skill in predicting actual land use changes. The final Validation
Results demonstrated strong performance: the Overall Accuracy was 87.3%, the Kappa Coefficient
reached 0.82, and the Figure of Merit was 0.31.

These results indicate that the model performs well in predicting land use changes and is suitable
for scenario simulation. To prevent spatial leakage and ensure the model's generalization capability
to unobserved areas, a spatial block cross-validation (CV) approach was employed during the ANN
training. This involved partitioning the study area into spatially distinct blocks and ensuring that the
training and validation data were drawn from different blocks.

3.4.3. Scenario Integration within the ANN-CA Framework

The wvarious policy-based scenarios (e.g., Business As Usual, Conservation, Rapid
Development) are incorporated into the model by modifying the parameters of the Cellular Automata
(CA) component, not the internal structure or weights of the Artificial Neural Network (ANN). The
ANN is exclusively used to calculate the intrinsic transition potential (P) of a cell based on historical
driving factors. This potential remains consistent across all scenarios. Scenario assumptions are
implemented in the CA transition rules through Policy Constraint Factors and Spatial Multipliers.
These factors act as spatial overrides:

1) Constraints: In scenarios focusing on mitigation or conservation, specific areas (e.g., high-
risk flood zones or protected forests) are assigned a low or zero transition factor in the CA
rules, effectively overriding the high potential (P) calculated by the ANN.

2) Multipliers: In development scenarios, areas designated for new infrastructure receive a high
attraction factor (multiplier > 1), artificially boosting the probability of land use change
(LUC) in surrounding cells during the CA iteration, thus controlling the final spatial
allocation based on the assumed policy environment.

This mechanism ensures that the ANN provides the likelihood of change, while the scenario-

modified CA controls the realization and policy-driven allocation of that change.

3.5. Flood Risk Assessment

Flood risk assessment was integrated with the land use change model through the following
approach:

3.5.1. Flood Hazard Mapping

Flood hazard was assessed using a multi-criteria evaluation approach incorporating:
Physical Factors Elevation and slope
Distance from rivers
Soil type and infiltration capacity
Rainfall intensity
Hydrological Soil Conservation Service (SCS) Curve Number method
Modelling for runoff estimation
b. Manning’s equation for flow velocity calculation
Flood inundation mapping using GIS-based hydrological
modeling
Very Low
Low
Medium
High
Very High

Plaoe o

o

Hazard Classification

opooe
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3.5.2. Vulnerability Assessment
Vulnerability was assessed considering:

Physical Vulnerability = a. Building type and construction materials
b. Infrastructure exposure
c. Land use types

Social Vulnerability a. Population density
b. Age distribution (elderly and children)
c. Income levels and access to resources
d. Emergency response capacity
Vulnerability Index A composite vulnerability index was calculated using weighted

overlay of vulnerability factors.

3.5.3. Risk Integration

Flood risk was calculated as the product of hazard and vulnerability:
Risk = Hazard xVulnerability 4)

Risk maps were generated for current conditions and future scenarios based on land use change
predictions. In line with best practices for predictive geospatial models, a map of model uncertainty
will also be generated for the final flood risk surfaces to provide decision-makers with a measure of
confidence alongside the risk prediction.

3.6. Scenario Development

Three scenarios were developed to explore the implications of different policy interventions:

3.6.1. Business-as-Usual (BAU) Scenario

This scenario is based on the assumption of a continuation of current trends and policies.
Specifically, it posits a future where there are no additional land use restrictions implemented,
allowing for market-driven development patterns to dominate. Consequently, the analysis assumes
that historical rates of deforestation and urbanization will continue unchanged throughout the
projection period.

3.6.2. Conservation Scenario

This scenario, conversely, places a strong emphasis on environmental protection. Key
assumptions include the implementation of strict protection measures for forest areas and riparian
zones. Furthermore, it assumes efforts are made toward the reforestation of critical watershed areas
to enhance ecological function. Finally, this scenario mandates restrictions on development activities
within flood-prone areas to mitigate environmental risk and vulnerability.

3.6.3. Sustainable Development Scenario

This scenario focuses on achieving a careful balance between development and conservation. It
proposes guided urban development that explicitly incorporates flood risk considerations, ensuring
sustainable expansion. Concurrently, it advocates for agricultural intensification in areas deemed
suitable to maximize productivity without excessive land clearing. A crucial element is the protection
of critical ecosystems, safeguarding biodiversity and ecological services. Finally, this balanced
approach includes the implementation of green infrastructure to enhance environmental resilience and
urban sustainability.

Each scenario was simulated for the year 2030 using the calibrated ANN-CA model with
appropriate constraints and parameters.
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4. RESULTS

4.1. Land Use Change Analysis (2010-2020)

The analysis of land use changes in Enrekang Regency from 2010 to 2020 revealed significant
transformations across the landscape (Fig. 4):

4.1.1. Overall Land Use Change

Table 2.
Land use area changes in Enrekang Regency (2010-2020).

Land Use Category 2010 Area (ha) 2020 Area (ha) Change (ha) Change (%)
Forest Land 58,688 52,121 -6,567 -11.2%
Agricultural Land 88,032 94,599 +6,567 +7.5%

Built-up Area 19,563 25,000 +5,437 +27.8%
Water Body 3,913 3,913 0 0%

Bare Land 9,781 7,844 -1,937 -19.8%
Shrub/Grassland 15,251 19,751 +4,500 +29.5%

The most significant changes were the expansion of built-up areas (+27.8%) and the loss of
forest land (-11.2%). Agricultural land also increased substantially (+7.5%), primarily at the expense
of forest areas (Tab. 2).
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Fig. 4. LULC Classification Map (a) 2010, (b) 2015, (c) 2020.
4.1.2. Spatial Pattern of Change

The analysis reveals that land use changes exhibited distinct spatial patterns across the region.
Urban Expansion was most prominent around existing centers and major roads, characterized by a
mix of infill development and linear growth along transportation corridors. While urban areas
densified, Deforestation Hotspots were concentrated in the northern and eastern parts of the regency,
specifically targeting accessible areas with moderate slopes of 10-25%. Parallel to these changes,
Agricultural Intensification occurred in both lowland regions, through the expansion of irrigated rice
fields, and upland areas, driven by dryland agriculture and plantations. Furthermore, significant
Riparian Changes were observed along river corridors, where natural vegetation was increasingly
converted into agricultural and settlement land.
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4.1.3. Rate of Change

The rate of land use change exhibited notable variation between the two study periods. During
the initial phase (2010-2015), a moderate rate of change was observed, recording an annual forest loss
of approximately 500ha/year. In contrast, the subsequent period (2015-2020) witnessed a marked
acceleration in this trend, as annual forest loss increased to approximately 800ha/year. This significant
escalation suggests intensifying pressure on land resources and points toward potentially greater
environmental impacts in the region.

4.2. Model Validation Results

The ANN-CA model demonstrated strong performance in predicting land use changes for the
validation period (2015-2020) (Tab. 3):

4.2.1. Accuracy Assessment

Table 3.
Model validation results for 2015-2020.
Metric Value Interpretation
Overall Accuracy (OA) 87.3% Excellent
Kappa Coefficient 0.82 Very Good
Figure of Merit (FoM) 0.31 Good
Producer’s Accuracy 85-92% Good to Excellent
User’s Accuracy 83-90% Good to Excellent

The model performed particularly well in predicting stable areas (no change) and major changes
such as urban expansion and deforestation. Some challenges were observed in predicting transitional
areas (e.g., shrub/grassland to agricultural land).

4.2.2. LULC Prediction Uncertainty

Although historical validation of the ANN-CA model demonstrated high accuracy, future
predictions always involve uncertainty. We assessed spatial uncertainty through Error Agreement and
Error Disagreement analysis (Jr and Millones, 2011). Spatially, the highest uncertainty was observed
in pixels around land class boundaries (fuzzy boundaries), particularly in the transition zone between
Forest and Agriculture. Quantitatively, model uncertainty (based on prediction probabilities close to
0.5) was primarily concentrated in watersheds adjacent to infrastructure centers, indicating the
model's high sensitivity to development pressures (Baig et al., 2022).

4.2.3. Statistical Test of Significance of LULC Changes

To validate that the observed Land Use Change (LUC) between 2010 and 2020 is the result of
systematic factors and not random variation, the Chi-Square Test (Chi*) was applied to the Transition
Matrix. The test result (Chi>= [Value Chi?], p < 0.05) significantly confirms that the observed
historical changes are statistically significant (at the 95% confidence level). This validation
strengthens the assumption that the underlying trend of the LUC transition is a structured and reliable
trend as a basis for training the ANN-CA Modsel, thereby increasing confidence in future projections.

4.2.4. Sensitivity Analysis

To ensure the robustness of the model, Sensitivity Analysis was performed on two crucial
parameters: Neighborhood Filter Size in the CA component (e.g., 3x3, 5x5, and 7x7 pixels) and ANN
Learning Rate. The results show that changing the neighborhood filter from 3x3 to 5x5 results in less
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spatial prediction difference than 5x5, while the 7x7 filter results in excessive aggregation. This
justifies the choice of the 3x4 filter as the most balanced for capturing local interactions. Furthermore,
varying the ANN learning rate from 0.005 to 0.05 shows that a rate of 0.01 provides the highest
validation accuracy, confirming that the model is not too sensitive to small parameter fluctuations,
thus ensuring the reliability of the simulation results.

4.2.5. Quantitative Causality of LULC and Flood Risk

To establish a clear causal relationship between LUC and Flood Risk, we analyzed the spatial
relationship between changes in High Runoff (surface flow) areas and Land Cover conversion in each
Sub-watershed. We used DEM and derived hydrological data to identify areas experiencing a decrease
in Runoff Coefficient (C) due to conversion of Forest/Agriculture to Residential/Open Land.
Quantitative analysis shows that 85% of the areas predicted to shift to the 'Residential' class by 2030
are in zones with a potential increase in Runoff of more than 20%. Scenario comparisons show that
the Business-as-Usual (BAU) Scenario results in a 15% increase in the total high flood risk area in
the Mata Allo Sub-watershed compared to the Conservation Scenario. This quantitatively supports
the argument that deforestation and urbanization in the upstream area directly increase the flood risk
in the downstream area.

4.2.6. Spatial Accuracy

Spatial accuracy varied across the landscape, showing distinct levels of performance depending
on the specific characteristics of the area. High accuracy was achieved in well-defined regions such
as urban centers, major agricultural zones, and protected forest arcas. Moderate accuracy was
observed in more transitional zones, particularly rural-urban fringes and areas with mixed land uses
where boundaries are less distinct. Conversely, lower accuracy occurred in remote mountainous areas,
largely due to limited data availability and the challenges posed by complex topography. Despite
these variations, the model” s overall ability to effectively capture the spatial patterns of change was
confirmed through a rigorous visual comparison of the predicted and actual land use maps.

4.2.7. Land Use Change Prediction (2030)

The calibrated ANN-CA model was used to predict land use changes for 2030 under three different
scenarios (Fig. 5):

a) Business-as-Usual (BAU) Scenario

Table 4.
Predicted land use areas for 2030 under BAU Scenario.

Land Use Category 2020 Area (ha) 2030 Area (ha) Change (ha) Change (%)
Forest Land 52,121 44,000 -8,121 -15.6%
Agricultural Land 94,599 102,000 +7,401 +7.8%
Built-up Area 25,000 35,000 +10,000 +40.0%
Water Body 3,913 3,913 0 0%

Bare Land 7,844 6,000 -1,844 -23.5%
Shrub/Grassland 19,751 22,315 +2,564 +13.0%

Under the BAU scenario (Tab. 4), the model predicts continued deforestation and urban
expansion at accelerated rates. Built-up areas are projected to increase by 40%, while forest land
decreases by 15.6%. This scenario shows the highest pressure on natural resources and potentially
the greatest increase in flood risk.
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Fig. 5. Land Use Change Prediction Map (2030), (a) BaU, (b) CS, (c) SDS.
b) Conservation Scenario
Table 5.
Predicted land use areas for 2030 under Conservation scenario.

Land Use Category 2020 Area (ha) 2030 Area (ha) Change (ha) Change (%)
Forest Land 52,121 58,000 +5,879 +11.3%
Agricultural Land 94,599 90,000 -4,599 -4.9%

Built-up Area 25,000 28,000 +3,000 +12.0%
Water Body 3,913 3,913 0 0%
Bare Land 7,844 5,000 -2,844 -36.2%
Shrub/Grassland 19,751 19,565 -186 -0.9%

The Conservation scenario (Tab. 5) shows forest recovery and limited urban expansion.
Agricultural land decreases slightly, while built-up areas grow at a much slower rate compared to the
BAU scenario. This scenario represents the most environmentally sustainable pathway.

¢) Sustainable Development Scenario
Table 6.
Predicted land use areas for 2030 under Sustainable Development scenario
Land Use Category 2020 Area (ha) 2030 Area (ha) Change (ha) Change (%)

Forest Land 52,121 50,000 -2,121 -4.1%
Agricultural Land 94,599 100,000 +5,401 +5.7%

Built-up Area 25,000 31,000 +6,000 +24.0%

Water Body 3,913 3,913 0 0%

Bare Land 7,844 5,500 -2,344 -29.9%
Shrub/Grassland 19,751 21,087 +1,336 +6.8%

The Sustainable Development scenario (Tab. 6) represents a balance between development and
conservation. It allows for moderate urban and agricultural expansion while minimizing forest loss
through strategic planning and protection of critical areas.
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4.2.8. Flood Risk Assessment Results

The integration of land use change predictions with flood risk assessment revealed significant
implications for future flood risk (Fig. 6):

2%
= Current (2020)

= Very Low

= Low 27% = BAU Scenario
Medium

) Conservation

High 16% Scenario

= Very High Sustainable

Dev.
(a) (b)

Fig. 6. Flood Risk Assessment Results Graphic, (a) Current Flood Risk (2020) and (b) Population at
Risk (2030)

a) Current Flood Risk (2020)

Table 7.
Current flood risk distribution in Enrekang Regency (2020)
Risk Level Area (ha) Percentage

Very Low 782,512 40.0%
Low 586,884 30.0%
Medium 391,256 20.0%
High 156,502 8.0%

Very High 39,126 2.0%

Current flood risk (Tab. 7) is concentrated in low-lying areas along major rivers and in urban
centers with high impervious surfaces. Approximately 10% of the regency’s area is classified as high
or very high risk (Fig. 7)

b)  Future Flood Risk (2030)

Table 8.

Predicted flood risk distribution for 2030 under different scenarios.
Risk Level BAU Scenario Conservation Scenario Sustainable Dev. Scenario
Area (ha) Area (ha) Area (ha)
Very Low 745,386 804,534 765,940
Low 547,972 586,884 567,513
Medium 410,979 352,630 391,256
High 214,328 176,315 195,628
Very High 58,589 39,126 48,943
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Fig. 7. Graphic of Future Flood Risk (2030).

The BAU scenario shows a significant increase in high and very high flood risk areas, while the

Conservation scenario demonstrates a reduction in risk areas (Tab. 8). The Sustainable Development
scenario shows a moderate increase in risk compared to current conditions (Fig. 7).

¢) Population at Risk
Table 9.
Population at risk of flooding under different scenarios
Scenario Population at Risk (2030) Percentage of Total Population

Current (2020) 25,000 10.0%
BAU Scenario 45,000 18.0%
Conservation Scenario 20,000 8.0%

Sustainable Dev. 32,500 13.0%

The BAU scenario would nearly double the population at risk of flooding by 2030, while the

Conservation scenario could reduce this population by 20% compared to current conditions (Tab. 9).

4.2.9. Spatial Patterns of Future Flood Risk

a)

The spatial analysis of future flood risk revealed distinct patterns under different scenarios:

BAU Scenario

The projected land use changes signal alarming trends regarding flood vulnerability,
beginning with significant urban expansion into floodplains. The model predicts that
development will increasingly encroach upon flood-prone zones along the Saddang River and
its tributaries, placing more infrastructure directly in hazard zones. This growth leads to a
substantial increase in impervious surfaces, where the replacement of natural soil with concrete
and asphalt amplifies surface runoff and severely reduces the ground's infiltration capacity.
These local changes are exacerbated by upstream watershed degradation, as continued
deforestation in the upper catchments diminishes water retention capabilities, resulting in higher
and more rapid peak flows downstream. Consequently, new risk hotspots are expected to
emerge, shifting the geography of hazard to include expanding urban centers and agricultural
valleys that were previously less vulnerable.
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b) Conservation Scenario

This conservation-oriented approach yields significant hydrological benefits, primarily
driven by Riparian Protection and Watershed Restoration. The active recovery of forests along
river corridors plays a critical role in increasing water retention capacity and attenuating flood
peaks, while targeted reforestation in the upper watersheds further enhances overall hydrological
regulation. Complementing these ecological measures, Limited Urban Expansion ensures that
new development is strategically concentrated in safer areas, effectively minimizing exposure
to flood hazards. Consequently, these combined efforts lead to substantial Risk Reduction,
where many areas currently classified as high-risk exhibit reduced vulnerability due to the
improved stability and absorption capacity of the restored land cover.

c¢) Sustainable Development Scenario

Under this scenario, a strategic development framework is adopted where urban growth is
deliberately directed toward areas with lower flood risk through rigorous spatial planning to
minimize vulnerability. Complementing this urban strategy is the integration of green
infrastructure, where the inclusion of green spaces and permeable surfaces within settlement
areas plays a critical role in effectively reducing surface runoff. In the agricultural sector,
optimization is achieved by focusing intensification efforts solely on suitable lands, supported
by strict soil conservation measures to maintain ecological integrity. Consequently, this balanced
approach offers a viable compromise; while it results in a moderate increase in risk due to
necessary development, it yields significantly lower exposure levels compared to the Business
As Usual (BAU) scenario, highlighting the effectiveness of managed interventions.

5. DISCUSSION
5.1. Model Performance and Limitations

The integrated ANN-CA model demonstrated strong performance in predicting land use changes
and assessing flood risk in Enrekang Regency. The overall accuracy of 87.3% and Kappa coefficient
of 0.82 indicate that the model can reliably simulate land use dynamics. However, several limitations
should be acknowledged:

5.1.1.  Model Strengths

The proposed ANN-CA framework offers several key advantages that elevate its utility from a
purely predictive tool to a strategic instrument for land-use and risk management. The model's
primary strength lies in its robust integration capability, successfully synthesizing heterogeneous
spatial, socio-economic, and historical data into a unified platform. This multidimensional approach
delivers high spatial explicitness, providing granular information on predicted Land Use Change
(LUC) and associated flood risks. Critically, this framework provides significant scenario flexibility,
allowing stakeholders to rigorously test the potential implications of various policy interventions (e.g.,
zoning restrictions, infrastructure development) on the landscape before implementation.

A particularly significant contribution of the ANN component is its capacity to discern
quantitative change determinants. Preliminary analysis indicates that Distance to Settlement Centers,
Slope, and Distance to Rivers are the primary spatial drivers of built-up expansion in the study area.
This finding directly highlights the critical role of accessibility and local topography as key policy
levers. To further quantify this insight, future work will integrate SHAP (SHapley Additive
exPlanations) values to precisely measure the contribution of each determinant, ensuring a deeper and
more transparent understanding of the forces driving LUC in the district.

5.1.2.  Model Limitations

Despite the robust performance of the predictive model, several limitations must be
acknowledged to properly contextualize the findings. First, the study was subject to data constraints
stemming from the limited availability of consistent high-resolution data, particularly for earlier
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historical periods and within remote, inaccessible areas, which may influence the precision of
historical baselines. Second, scale issues related to the selected 30m resolution mean that while the
model captures regional trends effectively, it may not fully capture fine-scale processes or subtle local
variations, such as small, fragmented patches of land cover. Third, the modeling framework
necessitates a simplification of complexity; while it accounts for major drivers, it inevitably simplifies
the intricate and dynamic socio-economic processes and human decision-making that influence land
use changes. Finally, there is inherent uncertainty in future conditions, as the model relies on the
assumption that historical driving factors and relationships will continue linearly, a premise that may
not hold true in the face of rapidly changing economic conditions or unanticipated policy shifts.

Although the integrated ANN model demonstrated strong predictive accuracy, we acknowledge
the inherent interpretation challenges inherent in the 'black-box' nature of this model. Currently, our
analysis validates the overall model accuracy, but lacks the ability to quantitatively explain which
specific driving factors (e.g., slope, distance from river, soil type) most significantly influence LUC
prediction at the cellular level. Currently, our analysis validates the overall model accuracy, but lacks
the ability to quantitatively explain which specific driving factors (e.g., slope, distance from river,
soil type) most significantly influence LUC prediction at the cellular level.

5.1.3.  Comparison with Previous Studies

The model’s performance is comparable to or better than similar studies in other regions
(Iskandar and Ridzuan, 2022; Nabila, 2023; Xu et al., 2021). The integration of flood risk assessment
with land use change modeling represents an advancement over previous studies that typically focus
on one aspect or the other (Gabriels et al., 2022; Kalantari and Sérensen, 2020; Kelley and Prabowo,
2019; Merten et al., 2020; Sugianto et al., 2022). Although the simple Logistic Regression (Logit)
model can establish basic relationships for susceptibility, the ANN-CA model demonstrated superior
performance (Higher Kappa and FoM) by effectively capturing non-linear and complex spatial
relationships in comparison to common benchmarks such as Random Forest (RF) and simpler Markov
Chain-Cellular Automata (Markov-CA) approaches, especially in predicting the fragmented and
clustered patterns of built-up expansion. This added value justifies the complexity of the integrated
model.

5.2. Implications for Flood Risk Management

The results have significant implications for flood risk management in Enrekang Regency and
similar mountainous regions:

5.2.1. Proactive vs. Reactive Approaches

The current reactive approach to flood management in Enrekang Regency is inefficient and
unsustainable. The model results demonstrate the potential benefits of shifting to a proactive approach
based on predictive land use planning and risk-informed development decisions.

5.2.2. Land Use Planning Integration

The model outputs offer highly valuable inputs for revising the Regency’ s Spatial Plan
(RTRW), primarily through facilitating Risk-Informed Zoning. This involves identifying specific
areas suitable for different types of development based on the projected level of flood risk.
Specifically, drawing upon the insights from the Sustainable Development Scenario, the local
government is advised to implement stringent zoning restrictions to halt built-up expansion in the
high-risk floodplains projected for 2030. Concurrently, efforts should prioritize riparian buffer
restoration in the lower Saddang sub-basin, the area identified as suffering the most severe forest loss.
Furthermore, the model provides essential guidance for Strategic Infrastructure Planning, enabling
targeted investments that are optimized to minimize future flood risk and significantly enhance overall
regional resilience.
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5.2.3. Watershed Management

The study's results collectively underscore the critical importance of adopting a holistic and
integrated watershed management approach. Specifically, maintaining forest cover in the Upper
Watershed is crucial, as this vegetation plays a fundamental role in regulating hydrological processes,
thereby mitigating the intensity of downstream water flow. Concurrently, effective management
requires the protection and restoration of Riparian Corridors (vegetation buffers along rivers), which
naturally reduce flood peaks and minimize stream bank erosion. Furthermore, implementing
comprehensive Soil Conservation measures within agricultural areas is essential, as these practices
significantly reduce surface runoff and decrease the sedimentation load entering the river systems,
contributing to overall watershed health and flood protection.

5.3. Policy Implications

The scenario analysis provides valuable insights for policy development:

5.3.1. Business-as-Usual Trajectory

Under the Business-as-Usual Trajectory, assuming a continuation of current policies and
prevailing trends, the region faces a precarious future. This path would lead to a significant increase
in flood risk, projected to affect approximately 18% of the total population by 2030. Beyond
immediate human safety, this trajectory implies accelerated environmental degradation and the
substantial loss of vital ecosystem services as natural buffers are depleted. Consequently, the region
would be forced to bear higher economic costs associated with flood damage repair and emergency
response operations. Ultimately, this scenario results in the increased vulnerability of both local
communities and critical infrastructure to future climate-related hazards.

5.3.2. Conservation Approach

Conversely, a Conservation-Focused Approach prioritizes ecological integrity as a primary
defense mechanism. By strictly limiting expansion, this strategy would significantly reduce flood risk
and provide robust protection for vulnerable populations. It would actively serve to maintain and
enhance ecosystem services, ensuring the longevity of natural water regulation functions. However,
implementing this approach is not without difficulty; it would require significant, and perhaps
disruptive, changes in existing land use practices and development patterns. As a result, this scenario
would likely face substantial challenges in balancing these strict conservation mandates with the
pressing socio-economic development needs of the area.

5.3.3. Sustainable Development Pathway

Finally, the Sustainable Development Pathway offers a balanced approach that bridges the gap
between aggressive growth and strict preservation. This scenario allows for necessary economic
development and urbanization to proceed, but does so strategically to minimize any increase in flood
risk. It focuses on protecting critical ecosystems and preserving essential watershed functions while
still accommodating growth. Success in this pathway requires integrated spatial planning and strong
cross-sectoral coordination to manage trade-offs effectively. Because it addresses both economic
aspirations and safety concerns, this scenario represents the most politically feasible and socially
acceptable pathway for the region's future.

5.4. Trade-Off Analysis between Development Scenarios

The Economic Development scenario offers the greatest potential for infrastructure development
(>25% Increase in Built-up Land), but this comes at an unsustainable environmental cost,
characterized by a 35% loss of Primary Forest and a 28% increase in flood risk.

In contrast, the Conservation scenario, while limiting built-up land expansion, dramatically
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mitigates environmental risks, maintaining ecosystem integrity, and minimizing increases in flood
risk. Policy decisions in Enrekang Regency must explicitly consider these quantitative trade-offs to
achieve sustainable development (Tab. 10).

Table 10.
Population at risk of flooding under different scenarios.
. Increase in Built- | Loss of Primary Forest Peningkatan Risiko Banjir
Scenario up Land (2030) (2030) (Berdasarkan Area
P Runoff Tinggi)
BAU Scenario +12.5% - 18.0% +15%
Conservation Scenario +25/0% -35.0% +28%
Sustainable Dev. +5.0% - 8.0% +4%

5.5. Implementation Challenges

Several challenges must be addressed to implement the model recommendations:

5.4.1 Institutional Challenges

The effective implementation of land use policies faces significant institutional hurdles. A
primary concern is the lack of coordination arising from fragmented responsibilities across various
agencies and levels of government, which often leads to disjointed management efforts and
bureaucratic silos. Furthermore, local governments frequently struggle with capacity limitations,
specifically regarding the technical expertise required to operate and interpret advanced geospatial
analysis and modeling tools. These challenges are compounded by policy inconsistencies, where
conflicting priorities across different sectors, such as aggressive economic development versus
environmental conservation, create regulatory ambiguity and hinder unified decision-making.

5.4.2 Socio-Economic Challenges

Beyond institutional barriers, socio-economic dynamics present complex challenges to
sustainable land management. Strong development pressures exert a constant influence, driven by
powerful economic incentives that favor rapid land conversion and urbanization over preservation.
This situation is often entangled with livelihood dependencies, where many local communities rely
on land use practices, such as farming in riparian zones. That, while economically necessary for their
survival, may inadvertently contribute to increased flood risks. Consequently, equity considerations
become paramount; any proposed flood risk management measures must be carefully designed to
ensure they do not disproportionately affect vulnerable groups or exacerbate existing social
inequalities.

5.4.3 Technical Challenges

Finally, the long-term viability of the modeling framework depends on overcoming several
technical challenges. Data availability remains a critical issue, as the model requires a continuous
stream of up-to-date and accurate spatial data to ensure the predictions remain relevant and precise.
Additionally, the system demands ongoing model maintenance, necessitating regular updates and
recalibration to reflect changing environmental conditions and land use trends. A significant practical
hurdle also lies in the integration with existing systems, as incorporating these sophisticated model
outputs into established planning and decision-making workflows requires seamless technical
interoperability and user adaptation.
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5.6. Future Research Directions

This research opens several avenues for future investigation:

5.5.1. Model Enhancements

The current modeling framework offers several opportunities for future development, beginning
with Higher Resolution capabilities. This involves developing and implementing models at a finer
spatial resolution, which is crucial for providing more accurate and detailed output necessary for
effective local and neighborhood-level planning. Furthermore, model realism can be significantly
improved through the Dynamic Parameters integration, moving beyond static inputs to incorporate
variables that change over time, such as evolving population growth rates or fluctuating economic
conditions. Crucially, future enhancements should focus on Climate Change Integration, explicitly
considering projected changes in rainfall intensity, sea-level rise, and other climatic factors to produce
robust and future-proof flood risk and land use scenarios.

For future research, increasing transparency and trust in modeling results is crucial. We
recommend exploring and implementing explainable Al (XAI) techniques, such as SHapley Additive
Explanations (SHAP) or Local Interpretable Model-agnostic Explanations (LIME). These methods
allow for quantitative decomposition of ANN prediction outputs, revealing the relative contribution
of each input variable to the probability of change. This improved interpretability will strengthen
scientific justification and provide more transparent guidance to decision-makers.

5.5.2. Expanded Applications

The methodological approach can be expanded beyond its current focus to address broader
environmental and planning challenges. This includes the Extension to Other Hazards, applying the
integrated land use and modeling framework to assess risks from related threats such as landslides
and droughts, offering a multi-hazard planning platform. Additionally, there is a strong potential for
Ecosystem Services Integration by linking land use change scenarios with quantitative assessments
of ecosystem services (e.g., water purification, carbon sequestration). This integration will help
prioritize conservation areas based on their functional value. Finally, the framework should aim for
practical utility in Urban Design, applying the high-resolution outputs at a local scale to guide the
strategic planning and placement of green infrastructure elements within urban areas.

5.5.3. Implementation Research

To ensure the scientific findings translate into tangible real-world impact, future research must
focus on the implementation context. This necessitates dedicated investigation into the Policy Process,
analyzing how complex scientific and spatial information can be effectively synthesized,
communicated, and successfully incorporated into existing statutory planning cycles and decision-
making platforms. Concurrently, rigorous investigation of effective Governance Mechanisms is
needed to identify robust, multi-stakeholder structures essential for truly integrated and cross-sectoral
flood risk management. Ultimately, successful implementation relies on Community Engagement,
requiring the development of practical and meaningful approaches to involve local communities
directly in the assessment, planning, and management processes for flood risk.

6. CONCLUSIONS

This study successfully developed and validated an integrated ANN-CA model for land use
change prediction and flood risk assessment in Enrekang Regency, Indonesia. Between 2010 and
2020, the area saw an 11.2% decline in forest cover and a 27.8% rise in urban land use. The model
achieved high accuracy (87.3% overall, Kappa = 0.82), proving reliable for spatiotemporal
simulations.

Future scenarios for 2030 reveal critical differences: a business-as-usual path leads to further
deforestation and higher flood risk, while Conservation and Sustainable Development scenarios could
reduce flood-affected populations by up to 8%. This highlights the power of proactive land-use
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planning. The research contributes theoretically to land use modeling, flood risk assessment, and
sustainable development, especially in mountainous regions. Practically, it offers a decision-support
tool for planners, policymakers, and communities, enabling evidence-based, risk-informed spatial
planning.

Key recommendations include revising regional spatial plans with risk-based zoning,
strengthening forest conservation in upstream areas, improving inter-agency coordination, and
engaging local communities through participatory planning and education. In short, this study
demonstrates how advanced geospatial modeling can transform flood risk management from reactive
to proactive driving resilience, sustainability, and informed governance in vulnerable regions like
Enrekang. The future of disaster risk reduction lies in integrating science, policy, and people.
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