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ABSTRACT 

Plastic pollution is a major environmental issue, especially in riverine and urban systems. 

Understanding its spatial distribution relative to land use/land cover (LULC) and precipitation is 

crucial. This study examined plastic waste distribution in Kendal Regency using a Plastic Index (PI) 

derived from remote sensing, Sentinel-2-based LULC classification, and precipitation data. Statistical 

analyses included boxplots, swarmplots, and correlation tests. PI values differed across LULC types, 

with higher values in settlements and industrial areas, and lower or negative values in forests and 

plantations. Irrigated paddies and water bodies showed high variability. In contrast, precipitation 

showed weak, inconsistent, and non-significant correlations with PI. Plastic accumulation is strongly 

linked to anthropogenic land cover rather than rainfall. The results highlight urbanization as a key 

driver of plastic pollution and provide insights for sustainable waste management strategies. 
 

Keywords: Plastic Index (PI); Land Use/Land Cover (LULC); Precipitation; Urbanization; Remote 

Sensing.  

1. INTRODUCTION 

Plastic waste is a global environmental issue that is becoming increasingly urgent to address. 

Global plastic production exceeds 400 million tons per year, with a significant portion ending up on 

land, in rivers, and in the oceans. The accumulation of non-biodegradable plastic waste threatens the 

sustainability of ecosystems as well as human health (World Bank, 2021). Indonesia ranks among the 

largest contributors of plastic waste in the world, with an estimated 7.8 million tons of mismanaged 

plastic waste per year, much of which leaks into coastal and marine ecosystems (World Bank, 2021). 

This situation poses a serious threat to biodiversity and community well-being, thereby requiring 

comprehensive monitoring and mitigation strategies (Zahrah et al., 2024). Kendal Regency, located 

on the northern coast of Central Java, faces a similar problem. The presence of major watershed (DAS 

in Bahasa Indonesia) such as the Bodri and Blorong Rivers makes the area a natural transport route 

for plastic waste from upstream to the coast. Research by Hanif et al., (2021) found microplastic 

contamination at the mouth of the Kendal River, while Laksono et al., (2021) detected microplastics 

in coastal sediments in Kendal waters. These findings indicate that plastic accumulation in Kendal is 

a real issue with the potential to damage coastal and marine ecosystems. In addition, the growth of 

settlements, industrial activity, and agricultural intensification further increase the potential for plastic 

waste generation, particularly from single-use plastics and agricultural plastics. 

Most previous studies have focused on ecological, socio-economic, or community-based waste 

management aspects. For example, Zahrah et al., (2024) highlighted the limitations of urban waste 

management systems in Indonesia, while local initiatives in Kendal such as the KerDUS Community 

focus on community-based zero-waste movements (Hidayati et al., 2025). However, studies 

specifically linking the spatial distribution of plastic waste with Land Use Land Cover (LULC) 
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dynamics remain limited. In fact, remote sensing-based LULC mapping can illustrate land-use 

patterns closely associated with plastic waste generation potential (Rußwurm et al., 2023).  

In recent years, machine learning approaches have developed rapidly in environmental research, 

including LULC classification, plastic waste detection, and modeling relationships among 

environmental factors (Aji et al., 2024). Algorithms such as Random Forest, Support Vector 

Machines, and Gradient Boosting have demonstrated high accuracy in land-cover classification and 

pollutant-distribution prediction due to their ability to handle nonlinear relationships and complex 

variables (Belgiu & Drăguţ, 2016). In the context of plastic waste management, machine learning 

models have been used to map potential plastic accumulation, identify pollution sources, and analyze 

interactions between biophysical characteristics and waste generation.  

Furthermore, field surveys remain a crucial component in plastic waste distribution studies, as 

they validate satellite-derived observations and machine learning model outputs. Survey methods 

such as transect sampling, surface debris density measurements, and laboratory microplastic analyses 

provide the empirical data needed to ensure accuracy and enhance model reliability. Integrating field 

surveys with remote sensing–based LULC data and machine learning has been widely recommended 

as the most effective approach for comprehensively understanding the spatial dynamics of plastic 

waste. Therefore, a research framework is needed that integrates satellite imagery–based LULC 

classification, Plastic Index data from field surveys, hydrometeorological variables such as 

precipitation, and machine learning modeling particularly Random Forest to evaluate the spatial 

determinants of plastic waste distribution. This study aims to fill this gap through an integrative 

approach capable of revealing the relationships between land-use types (settlements, industry, 

agriculture, forests, water bodies, and coastal areas) and levels of plastic waste accumulation. The 

findings of this research are expected to not only contribute scientifically to environmental geospatial 

studies but also serve as a foundation for formulating policies on plastic waste management and 

sustainable spatial planning in Kendal Regency. 

 

Fig. 1. Location of Kendal Regency. 
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2. STUDY AREA  

Kendal Regency is one of the regions in Central Java Province, located on the northern coast of 

Java Island with an area of approximately 1,002.23 km². Geographically, Kendal Regency lies 

between 6°50′–7°24′ S and 109°40′–110°18′ E, bordered by the Java Sea to the north, Semarang 

Regency to the east, Temanggung Regency to the south, and Batang Regency to the west (BPS 

Kendal, 2023). This geographical setting gives Kendal diverse landscape characteristics, ranging from 

coastal lowlands to hilly and mountainous areas in the southern part. The research location map is 

shown in (Fig. 1).  

Hydrologically, Kendal Regency is traversed by several important watersheds (DAS). The Bodri 

River is the main and largest river, while other significant rivers include the Blorong, Kendal, 

Towongso, Kuto, and Blukar Rivers, all of which flow directly into the Java Sea. These rivers serve 

vital functions, not only as sources of irrigation and domestic water but also as natural transport routes 

for materials from upstream to downstream. This condition makes Kendal’s coastal areas highly 

vulnerable to pollution, including the accumulation of plastic waste carried by river flows. In terms 

of land use and land cover (LULC), Kendal Regency is dominated by agricultural land (rice fields 

and dry fields), settlements, industry, protected forests, and coastal zones. Industrial areas have 

rapidly expanded in the lowland and coastal regions, particularly in the subdistricts of Kaliwungu, 

Brangsong, and Kendal City, supported by the presence of the Kendal Industrial Estate (KIK) as one 

of the national strategic zones. The rapid growth of industry and urbanization has implications for 

increasing plastic waste generation, especially in areas adjacent to rivers and coastal zones (Cordova 

et al., 2018). 

In addition to its physical characteristics, several socio-economic and waste management 

indicators further highlight Kendal’s vulnerability to plastic pollution. Kendal Regency has a 

population of approximately 1.05 million inhabitants with an average density of around 1,050 persons 

per km2, concentrated mainly in the northern lowlands. Urban settlements account for roughly half of 

the population, reflecting ongoing urban expansion along the coastal industrial corridor. The regency 

also hosts a substantial number of industrial facilities particularly manufacturing, food processing, 

and textile industries clustered around the Kendal Industrial Estate and other industrial clusters. Solid 

waste generation is estimated at 800-900 tons per day, yet formal waste management infrastructure, 

including temporary disposal sites (TPS), community-based waste processing (TPS 3R), and the 

regional landfill, remains limited in coverage and operational capacity. These conditions contribute 

to the leakage of mismanaged plastic waste into drainage networks and river systems. 

This study focuses on six major rivers in Kendal Regency, namely the Kuto, Towongso, Blukar, 

Bodri, Kendal, and Blorong Rivers. The selection of these rivers is based on several academic 

considerations. In terms of environmental significance, these rivers serve as the primary transport 

pathways for plastic waste from upstream areas toward vulnerable coastal zones. From the perspective 

of socio-economic drivers, all six rivers flow through areas with intensive economic activities—

including industrial zones, densely populated settlements, and commercial centers—that have a high 

potential for plastic leakage. Based on their hydrological characteristics, these rivers exhibit 

substantial discharge and watershed sizes and function as the main regional drainage channels that 

carry various anthropogenic materials to the sea. The final consideration is data availability, as these 

rivers have existing documentation and field survey records, enabling the verification of remote 

sensing analysis. This study utilizes Sentinel-2 imagery acquired between 30 May and 11 June, 

selected to coincide with the timing of field surveys conducted along the six rivers. This temporal 

alignment ensures consistency between the spatial conditions observed during fieldwork and the 

remote sensing data used in the analysis. 

3. DATA AND METHODS 

3.1. Sentinel-2 Satellite Imagery  

This study utilizes Sentinel-2 Level-2A imagery, which provides orthorectified and 

atmospherically corrected surface reflectance processed using the Sen2Cor algorithm, ensuring more 
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accurate reflectance values for spectral analysis (Louis et al., 2016). Sentinel-2, an Earth observation 

mission operated by the European Space Agency (ESA), is equipped with the MultiSpectral 

Instrument (MSI) comprising 13 spectral bands with spatial resolutions of 10 m (Blue, Green, Red, 

NIR), 20 m (Red Edge, SWIR), and 60 m (Coastal aerosol, Water vapor, Cirrus), a 290 km swath 

width, and a combined revisit time of 5 days for Sentinel-2A and Sentinel-2B (Drusch et al., 2012; 

Delwart, 2015). Image selection was conducted using several criteria, including a maximum cloud 

coverage threshold of ≤10%, availability of Level-2A surface reflectance products on Google Earth 

Engine (GEE), stable radiometric conditions, and acquisition dates representative of normal dry-

season hydrological conditions.  

The selection procedure involved filtering the COPERNICUS/S2_SR collection based on the 

study area, date range (30 May–11 June, aligned with the field survey period), and cloud percentage, 

followed by identifying the scene with the lowest cloud contamination. Although the images were 

already atmospherically corrected via Sen2Cor, additional preprocessing involved masking cloud and 

shadow pixels using the Sentinel-2 Scene Classification Layer (SCL), specifically removing cloud 

shadow, medium-probability cloud, high-probability cloud, thin cirrus, and snow/ice classes to retain 

only valid surface reflectance. The preprocessed imagery was then used to extract spectral information 

through several indices, including the Plastic Index (PI) for detecting plastic waste (Biermann et al., 

2020), NDVI for vegetation assessment, NDBI for identifying built-up areas, NDWI for delineating 

water bodies, and the Turbidity Index (TI) for evaluating water turbidity. Together, these indices 

provide a comprehensive analytical framework for identifying the spatial distribution of plastic waste 

while accounting for the surrounding environmental conditions. 

 

3.2. Rainfall Data from CHIRPS   

       This study also utilizes CHIRPS (Climate Hazards Group InfraRed Precipitation with Station 

data) as a source of rainfall information. CHIRPS is a quasi-global rainfall dataset developed by the 

Climate Hazards Group (University of California, Santa Barbara) in collaboration with the U.S. 

Geological Survey (USGS), covering latitudes from 50°N to 50°S. The dataset offers a spatial 

resolution of 0.05° (~5 km) with daily, dekadal, and monthly temporal resolutions from 1981 to the 

present (Funk et al., 2015). CHIRPS integrates satellite-based infrared precipitation estimates from 

geostationary platforms with in-situ rain gauge observations from thousands of stations worldwide, 

producing long-term, consistent, and improved rainfall records compared to using satellite or gauge 

data alone. In this study, CHIRPS is used to analyse rainfall variability across the study area, which 

is essential for understanding river hydrological dynamics and their relationship to plastic waste 

distribution in aquatic systems.  

To enhance the reliability of rainfall inputs, CHIRPS has been extensively validated and applied 

across a wide range of hydrological and climate-related studies. Previous research has demonstrated 

its robustness for monitoring rainfall patterns (Paredes-Trejo et al., 2021), flood modelling in data-

scarce regions (Rayamajhi et al., 2025), drought assessment (Tikuye et al., 2025), and improving 

runoff estimation in ungauged basins. Its strong performance in tropical humid environments has also 

been confirmed in Southeast Asia, further reinforcing its suitability for the present study, particularly 

in characterising rainfall variability and assessing its influence on riverine plastic waste dynamics in 

Kendal Regency.  

 

3.3. River Data 

       The river data used in this study were obtained from the Environmental Agency of Kendal 

Regency in vector format. This dataset serves as a reference for delineating the research area, 

particularly in the analysis of plastic waste distribution along river channels. The rivers selected for 

this study are the major rivers located within Kendal Regency, as they play a significant role in 

transporting materials, including plastic waste, from upstream areas to downstream and eventually to 

the sea. By utilizing river vector data, the mapping of waste distribution can be conducted more 

accurately, while also enabling integration with other spatial datasets, such as land use/land cover 

(LULC) and plastic waste sampling points obtained from field surveys.   
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3.4. Land Use Land Cover (LULC) Data 

       Land Use/Land Cover (LULC) data in this study were obtained through the extraction of Sentinel-

2 satellite imagery for the year 2024. The extraction process utilized relevant band composites to 

distinguish the spectral characteristics of each land cover type, allowing the identification of land use 

patterns along the riverbanks. The classification results were used to determine land use categories, 

including Dry Forest, Mixed Crops, Settlements, Industrial Buildings, Irrigated Rice Fields, 

Agricultural Land, Mixed Plantations, Water Bodies, Shrubs, and Plantations, which serve as 

important factors in understanding environmental dynamics (Aji et al., 2024).  

The presence of plastic waste accumulated in river channels is often associated with the 

surrounding land use types. For instance, densely populated settlement areas tend to contribute more 

significantly to waste accumulation compared to natural vegetation areas. Sentinel-2–based LULC 

not only provides a spatial representation of land cover conditions but also serves as a foundation for 

examining the relationship between plastic waste distribution and land use characteristics along the 

riverbanks.  

 

3.5. Integrated Geospatial and Machine Learning Methodology 

       This study employed an integrated geospatial and machine learning framework to analyse 

riverine plastic waste distribution, Land Use/Land Cover (LULC) patterns, and their relationship with 

precipitation in Kendal Regency. All spatial analyses were implemented using Google Earth Engine 

(GEE), enabling efficient processing of multi-source remote sensing and environmental datasets. The 

overall methodological workflow is illustrated in (Fig. 2).  

 

3.5.1. Overall Analytical Workflow 

       The methodological framework consisted of four main stages: (1) extraction and preprocessing 

of satellite-based spectral data and rainfall information; (2) derivation of spectral indices related to 

vegetation, built-up areas, water bodies, turbidity, and plastic waste; (3) application of Random Forest 

(RF) models for both plastic index prediction and LULC classification; and (4) integration of plastic 

waste distribution, LULC patterns, and precipitation data to examine their spatial interrelationships 

along major river corridors. This integrated approach was designed to capture both anthropogenic and 

environmental drivers of plastic accumulation at the landscape scale.  

 

3.5.2. Overall Analytical Workflow 

       Plastic waste detection was based on multispectral information derived from Sentinel-2 Level-

2A imagery acquired between 30 May and 11 June 2025 and temporally aligned with field surveys. 

Several spectral indices were calculated to enhance the discrimination of plastic materials from other 

surface features.  

Vegetation conditions were characterized using the Normalized Difference Vegetation Index 

(NDVI), defined as NDVI = (NIR−Red)/(NIR+Red), while built-up areas were highlighted using the 

Normalized Difference Built-up Index (NDBI), calculated as NDBI = (SWIR−NIR)/(SWIR+NIR). 

Water-related features were enhanced using the Normalized Difference Water Index (NDWI), 

expressed as NDWI = (Green−NIR)/(Green+NIR).  

Turbidity conditions were represented by the Turbidity Index (TI), computed as TI = 

(RedEdge−Red)/(RedEdge+Red). Plastic waste distribution was quantified using the Plastic Index 

(PI), defined as PI = NIR/(NIR+Red), derived from spectral band ratios and index-based corrections 

sensitive to synthetic materials in aquatic environments. In this formulation, Green, Red, RedEdge, 

NIR, and SWIR represent the green, red, red-edge, near-infrared, and shortwave infrared bands of 

Sentinel-2 imagery, respectively.  

All indices were spatially constrained to the study area and masked using cloud and shadow 

information from the Sentinel-2 Scene Classification Layer to ensure that only valid surface 

reflectance pixels were retained. The resulting multi-index dataset constituted the feature space for 

subsequent Random Forest modeling. 
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3.5.3. Random Forest Modeling Framework 

         Random Forest (RF) regression was employed to model the spatial distribution of plastic waste 

by predicting Plastic Index (PI) values from multispectral indices. RF was selected due to its 

robustness in handling non-linear relationships, high-dimensional feature spaces, and 

multicollinearity, which are common in remote sensing data. The RF model was trained using a set 

of predictor variables derived from spectral indices (NDVI, NDWI, NDBI, TI) and spectral bands, 

with PI as the response variable. To evaluate model sensitivity to parameterization, RF models were 

trained using different numbers of decision trees (50, 100, and 150). Training and validation datasets 

were constructed using field-validated sample points collected along six major rivers. This design 

ensured that the model learned relationships representative of diverse hydrological and land-use 

contexts within the study area. 

3.5.4. Model Performance Evaluation and Optimization 

Model performance was assessed using three standard regression metrics: the coefficient of 

determination (R²), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). MAE 

quantifies the average absolute difference between observed and predicted PI values, while RMSE 

emphasizes larger prediction errors and reflects overall model accuracy. R² measures the proportion 

of variance in observed PI values explained by the model. To improve robustness and reduce 

overfitting, a k-fold cross-validation approach was applied. Performance metrics were evaluated 

across different tree numbers to identify the optimal RF configuration. The final model selection was 

based on the combination of highest R² and lowest MAE and RMSE values, ensuring stable and 

reliable prediction of plastic waste distribution. 

3.5.5. Model Performance Evaluation and Optimization 

Land Use/Land Cover classification was conducted using Sentinel-2 imagery for the year 2024, 

applying a Random Forest classifier consistent with the Indonesian National Standard for land cover 

classification (SNI 7645:2010). Ten LULC classes were identified, including Dryland Forest, 

Agricultural Land, Mixed Crops, Plantations, Mixed Plantations, Shrubs, Settlements, Industrial 

Buildings, Irrigated Rice Fields, and Water Bodies. To ensure relevance to riverine plastic dynamics, 

LULC analysis was focused on a 500-m buffer surrounding major rivers. This buffer-based approach 

captures land-use characteristics most likely to influence plastic input, transport, and accumulation 

within river systems. Classification accuracy was evaluated using standard accuracy assessment 

metrics, including overall accuracy and the kappa coefficient. 

3.5.6. Integration of Plastic Index, LULC, and Rainfall 

Following validation of both plastic detection and LULC classification results, spatial 

integration analysis was performed to examine relationships among PI values, LULC classes, and 

precipitation patterns. Daily rainfall data derived from CHIRPS were temporally aggregated to match 

the plastic detection period and spatially aligned with river corridors. The integrated dataset enabled 

statistical and spatial analyses of plastic waste distribution across different land-use types and rainfall 

regimes. This final stage provided the basis for identifying dominant spatial drivers of plastic 

accumulation and for interpreting the relative influence of anthropogenic land use versus 

hydrometeorological variability. 

 

4. RESULTS AND DISCUSSIONS 

4.1. Map of Plastic Waste Detection Results 

The results of waste detection in Kendal Regency are shown in (Fig.3). The figure above presents 

a map of plastic waste detection in Kendal Regency. The results indicate that plastic waste is 

distributed across the six major rivers in the region. The detection outcomes reveal a gradient ranging 

from low to high concentrations, represented by a color scheme from green to red. Several sample 

pixels are highlighted on the map, demonstrating that different river segments exhibit varying levels 

of plastic waste concentration (low, medium, and high). 
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Fig. 3. Map of plastic waste distribution in six rivers in Kendal. 

The visualization of plastic-related pixels indicates substantial spatial heterogeneity across river 

locations. The applied classification system, which employs a color gradient, provides a clear 

representation of the distribution patterns. Similar approaches have been widely used in remote 

sensing-based plastic detection research, where multispectral or satellite imagery was classified to 

map riverine and coastal plastic pollution (Cortesi et al., 2021; Nivedita et al., 2024). Sample pixels 

on different river sections show distinct spectral characteristics, emphasizing the variability of plastic 

pollution intensity. 

The findings further suggest that plastic waste is not evenly distributed across the region. The 

highest concentrations (red–orange pixels) are clustered in specific areas, likely associated with 

anthropogenic activities such as dense settlements, industrial zones, and disposal points. In contrast, 

areas dominated by green pixels indicate relatively lower levels of plastic pollution, reflecting better 

environmental conditions. These results align with previous studies that demonstrate the strong 

linkage between land use, especially settlements and industrial areas, and plastic accumulation in 

rivers (Cerra et al., 2025; Cortesi et al., 2022). Such heterogeneity underscores the importance of 

targeted mitigation strategies in high-risk zones where anthropogenic pressure is most pronounced.  

To validate the detection model, 147 field samples were collected along major rivers (Fig.4). The 

field survey involved validating the detected pixels with actual plastic waste conditions, particularly 

waste deposited in river bends, sandbars, or other accumulation points. Accuracy assessment was 

conducted using three statistical metrics: Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and the Coefficient of Determination (R²). The regression analysis yielded highly 

satisfactory results.  

The MAE value of 0.0536 indicates an average prediction error of only ~0.054 units, reflecting 

high model accuracy. Similarly, the RMSE of 0.0728 demonstrates relatively low prediction error, 

consistent with the MAE value. The R² value of 0.8892 shows that approximately 88.92% of the 

variance in the observed data is explained by the model, confirming its strong predictive capability. 

The scatter plot (Fig.5) further illustrates the alignment between predicted and observed values, with 

most data points clustering around the 1:1 reference line, indicative of high model reliability. 

Model performance was further assessed through cross-validation and hyperparameter tuning to 

ensure robustness. A 3-fold cross-validation approach was employed to reduce bias from single data 

partitioning. Performance was consistently evaluated using MAE, RMSE, and R² metrics, and 

averaged across folds as the final performance indicators. 
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Fig. 4. Field Sample Point Distribution Map. 

 
Fig. 5. Graph of Predicted vs. Actual Model Values. 

The evaluation of the Random Forest model with varying numbers of trees is shown in (Fig.6-

8). The results demonstrate a clear improvement in predictive performance with increasing tree 

counts. As shown in (Fig.6), the mean R² value improved from 0.883 (50 trees) to 0.888 (100 trees), 

and further to 0.890 (150 trees). Similarly, the average MAE exhibited a declining trend (Fig.7), 

decreasing from 0.0586 (50 trees) to 0.0576 (100 trees), and finally to 0.0574 (150 trees). The RMSE 

values followed a comparable pattern (Fig.8), with values decreasing from 0.0725 (50 trees) to 0.0715 

(100 trees), and further to 0.0710 (150 trees). These results highlight that increasing the number of 

trees in the Random Forest algorithm contributes to more stable and accurate predictions of the Plastic 

Index (PI), which is consistent with findings in other machine learning-based remote sensing studies 

(Cortesi et al., 2021, 2022). 
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Fig. 6. Cross-Validation Graph.  

 
Fig. 7. Graph of the Relationship between Mean Absolute Error and Number of Trees.  

 
Fig. 8. Graph of the Relationship between Root Mean Square Error and Number of Trees. 

Overall, the model evaluation confirms that the adopted Random Forest approach is both robust 

and reliable in detecting plastic waste distribution from satellite imagery. The strong predictive 

performance, validated through statistical metrics and cross-validation, demonstrates the potential of 

machine learning-based remote sensing techniques in supporting sustainable riverine waste 

management (Nivedita et al., 2024). 
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4.2. Land Use Land Cover (LULC) Mapping 

The LULC classification for 2024 was conducted using Sentinel-2 imagery, referring to the 

Indonesian National Standard (SNI) 7645 of 2010 on Land Cover Classification. The standard was 

applied at a scale of 1:25,000 with ten land cover classes, namely: Dry Forest, Agricultural Land, 

Mixed Crops, Plantations, Mixed Plantations, Shrubs, Settlements, Industrial Buildings, Irrigated 

Rice Fields, and Water Bodies. The accuracy assessment results showed an overall accuracy of 98% 

and a kappa coefficient of 97%. These values are higher compared to the previous classification, 

which had an accuracy of 89% and a kappa of 85%. This improvement indicates that Sentinel-2-based 

classification methods provide more reliable results for LULC mapping (Belgiu & Drăguț, 2016; Phiri 

et al., 2020). Based on the Land Use/Land Cover (LULC) map of Kendal Regency in 2024 (Fig. 9), 

the spatial distribution of land cover exhibits considerable complexity. In the northern coastal areas, 

Water Bodies (blue) and Irrigated Rice Fields (light green) dominate, reflecting intensive rice 

cultivation activities and the presence of coastal water bodies. Meanwhile, the central to southern 

parts of the region are dominated by Agricultural Land, Mixed Crops, and Plantations, consistent with 

Kendal Regency’s characteristics as an agriculture- and plantation-based area (SNI, 2010).  

 

Fig. 9. LULC Map of Kendal Regency in 2024. 

The Settlements and Industrial Buildings classes appear concentrated along major transportation 

corridors and urban centers, indicating increased urbanization activities. This distribution also 

highlights development pressures on ecological balance, particularly around major rivers (Chen et al., 

2024). In contrast, Shrubs and Mixed Plantations appear sporadically, signaling land degradation or 

transitional land use. Furthermore, the area-based analysis of each land cover class reveals clear 

quantitative differences that reflect the region’s landscape structure (Fig. 10). The largest land cover 

categories are Mixed Plantation and Irrigated Rice Fields, each covering approximately 204 km² 

(20.3%), highlighting the dominance of plantation systems and irrigated agriculture across Kendal 

Regency. Dryland Forest accounts for around 176 km² (17.4%), indicating the presence of significant 

forested areas, particularly in the upland southern regions that contribute to ecological stability. 
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a) 

      b) 

Fig. 10. Distribution of land use and land cover (LULC) classes in the study area: (a) total area (ha) and (b) 

relative proportion (%).  

The Settlement class occupies about 97 km² (9.7%), while Mixed Crops covers roughly 82 km² 

(8.3%), reflecting the distribution of residential and diversified agricultural zones in the mid-regency 

areas. Plantation areas comprise around 81 km² (8.2%), further emphasizing the importance of estate-

crop cultivation in the local economy. Meanwhile, Fields extend over approximately 62 km² (6.2%), 

representing areas dominated by seasonal cropping systems. Water Bodies, primarily found in the 

northern coastal zone, cover around 59 km² (5.9%), consistent with the presence of coastal waters and 

aquaculture ponds. Shrubs, representing transitional or degraded land, occupy the smallest area of 

roughly 30 km², appearing in scattered patches across the region. Industrial Buildings cover a minimal 

area of about 3 km², but are spatially clustered along major corridors, consistent with the concentration 

of manufacturing zones. The Area of Interest (AOI) of the study was focused on areas surrounding 

major rivers in Kendal Regency (Fig. 11). To obtain a land cover distribution representation relevant 

to river dynamics, LULC analysis was conducted within a 500-meter buffer from each major river. 

This approach was chosen to ensure that the mapping results align with the study’s objective, namely 

to examine the relationship between land cover distribution and aquatic environmental conditions, 

particularly concerning the potential distribution of plastic waste in the study area. 
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Fig. 11. Map of Plastic Waste Distribution and 500-Meter LULC Buffer. 

 

4.3. The Relationship between Plastic Waste Detection Locations, LULC, and Rainfall  

In this analysis, LULC classes include Dryland Forest, Mixed Crops, Settlements, Industrial 

Buildings, Irrigated Paddy Fields, Dry Fields, Mixed Plantations, Water Bodies, Scrub, and 

Plantations. However, the current dataset only contains observations for Dryland Forest, Settlements, 

Irrigated Paddy Fields, Mixed Plantations, Water Bodies, and Scrub. The statistical analysis of PI 

values across observed LULC classes highlights a strong anthropogenic influence on plastic 

accumulation patterns. Settlements exhibit the highest median PI values (approximately +0.10 to 

+0.15), which directly reflects household waste generation, commercial activities, and inadequate 

solid waste management systems. This class serves as the primary source zone for plastic pollution in 

the landscape (Fig. 12). 

 

Fig. 12. Distribution of Plastic Index (PI) across LULC classes using Boxplot and Swarmplot. 
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Water Bodies display the greatest spatial variability in PI values, with observations ranging from 

approximately -0.45 to +0.35. While the median value remains close to zero (~+0.02), the presence 

of extreme positive outliers (up to +0.35) indicates that certain water bodies act as significant 

accumulation sinks, receiving plastics transported by surface runoff, drainage, and riverine flow. This 

heterogeneity suggests that water bodies with high hydrological connectivity to settlements or 

agricultural areas experience localized hotspots of plastic accumulation, whereas more isolated or 

upstream water bodies remain relatively unaffected. In contrast, negative PI values are consistently 

observed across vegetated and less-disturbed landscapes. Mixed Plantations show the lowest median 

PI (~-0.35), followed by Scrub (median ~-0.28) and Dryland Forest (median ~-0.25). These negative 

values reflect the buffering role of vegetated land covers, where vegetation acts as a physical barrier 

to plastic transport and accumulation. The lower levels of direct human activity in these areas also 

contribute to reduced plastic inputs. 

Irrigated Paddy Fields demonstrate moderate negative median PI values (around -0.10) with 

relatively low variability. This pattern suggests that while irrigated agriculture is less contaminated 

than settlements, the irrigation infrastructure and water management practices may still introduce 

some plastic materials, particularly if irrigation water is sourced from potentially contaminated water 

bodies or located near waste-generating areas. Notably absent from the analysis are Mixed Crops, 

Industrial Buildings, Dry Fields, and Plantations. The lack of observations in these classes may 

indicate either their limited spatial extent in the study area or sampling gaps. Future research should 

prioritize targeted sampling in these land use types, particularly Mixed Crops and Industrial 

Buildings, which are expected to show elevated PI values based on their anthropogenic character. 

Overall, the results demonstrate a clear land use gradient in plastic pollution: human-dominated 

landscapes (Settlements) function as primary sources with elevated PI values, Water Bodies serve as 

dynamic transport and variable accumulation zones, while vegetated and less-disturbed areas (Mixed 

Plantations, Scrub, Dryland Forest) consistently show negative PI values, acting as natural buffers. 

This spatial pattern underscores the critical importance of integrated land use planning, improved 

solid waste management in settlement areas, and the preservation of vegetated buffers to mitigate 

plastic pollution at the landscape scale. 

The application of locally weighted scatterplot smoothing (LOWESS) regression to the 

relationship between plastic index (PI) and land use/land cover (LULC) classes reveals a distinct non-

linear pattern that reflects the complex interplay between anthropogenic activities and plastic 

accumulation dynamics across the landscape (Fig. 13). The smoothed trend line demonstrates 

substantial variability in PI values across the LULC gradient, with peaks corresponding to human-

dominated land uses and troughs associated with vegetated or semi-natural landscapes.  

 

Fig. 13. Relationship between Plastic Index (PI) and Land Use/Land Cover (LULC). 
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The LOWESS curve exhibits an initial increase from Dryland Forest (PI ≈ -0.30) to a 

pronounced maximum at Settlements (PI ≈ +0.10 to +0.15), representing an increase of approximately 

0.40 to 0.45 units across this transition. This sharp gradient underscores the fundamental role of 

residential and commercial areas as primary point sources of plastic pollution in the study landscape. 

The elevated PI values observed in settlement areas are consistent with previous studies 

demonstrating the correlation between population density, inadequate municipal solid waste 

management infrastructure, and environmental plastic loads (Jambeck et al., 2015; Lebreton et al., 

2017). The considerable scatter of individual observations around Settlements (ranging from 

approximately -0.05 to +0.30) suggests significant intra-class heterogeneity, likely attributable to 

variations in waste management practices, population density, and socioeconomic factors across 

different settlement types within the study area. 

Following the peak at Settlements, the LOWESS trend exhibits a declining trajectory through 

Irrigated Paddy Fields, reaching a local minimum at Mixed Plantations (PI ≈ -0.20 to -0.35). The 

negative PI values observed in Irrigated Paddy Fields (median PI ≈ -0.10) indicate relatively low 

plastic contamination despite their position in the agricultural production landscape. This pattern may 

reflect the combined influence of regular water management practices that facilitate plastic transport 

and removal, as well as the lower intensity of plastic-generating activities compared to settlements. 

The further decline toward Mixed Plantations demonstrates the buffering capacity of plantation 

systems, where dense vegetation cover and reduced anthropogenic disturbance limit plastic 

accumulation through physical interception and reduced waste inputs (Browne et al., 2011; Eerkes-

Medrano et al., 2015)  

A notable secondary increase in the LOWESS curve occurs at Water Bodies, where the 

smoothed trend approaches near-neutral values (PI ≈ -0.05 to 0.00). However, this class exhibits the 

greatest dispersion of individual observations, with values spanning the entire analytical range from 

-0.45 to +0.35. This extreme variability reflects the dual nature of aquatic systems as both transport 

corridors and accumulation sinks for plastic debris (Ballent et al., 2016; Van Emmerik & Schwarz, 

2020). The presence of substantial positive outliers (PI > +0.20) indicates that specific water bodies 

within the study area function as significant plastic accumulation hotspots, likely resulting from 

convergent flow patterns, proximity to upstream pollution sources, limited flushing capacity, or the 

presence of physical retention features such as debris dams or low-energy depositional zones. 

Conversely, negative PI values in other water bodies suggest effective transport and removal 

processes, potentially associated with higher flow velocities, greater hydrological connectivity to 

downstream systems, or isolation from direct pollution inputs. This heterogeneity underscores the 

importance of site-specific assessment rather than class-level generalizations when evaluating plastic 

contamination in aquatic environments. 

The final segment of the LOWESS curve demonstrates a sharp decline to strongly negative 

values at Scrub (PI ≈ -0.30). Scrubland areas, characterized by low anthropogenic pressure and 

moderate vegetation cover, consistently exhibit low plastic accumulation. The relatively constrained 

scatter of observations within this class indicates more homogeneous environmental conditions and 

reinforces the role of semi-natural vegetation as an effective barrier to plastic transport and deposition. 

The non-linear relationship revealed by the LOWESS analysis has important implications for 

understanding landscape-scale plastic pollution dynamics. The oscillating pattern, with distinct peaks 

at Settlements and Water Bodies separated by troughs at vegetated land covers (Dryland Forest, 

Mixed Plantations, Scrub), demonstrates that plastic accumulation cannot be adequately described by 

simple linear models or uniform urban-to-rural gradients. Instead, the spatial distribution of plastic 

pollution reflects a mosaic pattern determined by the specific characteristics of each land use type, 

their spatial configuration, and the connectivity pathways that facilitate plastic transport between 

source and sink areas. 

From a management perspective, these findings highlight three priority intervention points: (1) 

enhanced solid waste management and behavioral change programs in Settlement areas to reduce 

plastic inputs at the source; (2) strategic preservation and expansion of vegetated buffer zones, 

particularly Mixed Plantations and Scrubland, to intercept plastic transport pathways; and (3) targeted 
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monitoring and remediation efforts in high-accumulation water bodies identified through the 

substantial positive outliers observed in Water Bodies. The strong buffering effect demonstrated by 

vegetated land covers (Dryland Forest, Mixed Plantations, and Scrub) supports nature-based solutions 

approaches that integrate riparian vegetation management and green infrastructure into broader plastic 

pollution mitigation strategies. 

The LOWESS regression analysis of the relationship between precipitation and plastic index 

(PI) reveals a complex, non-monotonic pattern that deviates substantially from simple linear 

assumptions (Fig. 14). The smoothed trend line demonstrates multiple inflection points across the 

precipitation gradient, suggesting that the influence of rainfall on plastic accumulation operates 

through multiple, competing mechanisms that vary in dominance across different precipitation 

regimes. At the lower end of the precipitation spectrum (0-10 mm), the LOWESS curve exhibits 

moderate positive PI values (approximately +0.05), followed by a sharp decline to a local minimum 

at approximately 10 mm (PI ≈ -0.15). This initial negative trend may reflect the threshold mobilization 

effect, whereby moderate rainfall events possess sufficient energy to initiate plastic transport from 

terrestrial surfaces but insufficient volume to facilitate long-distance transport or dilution. The 

substantial scatter of individual observations within this range (spanning from approximately -0.40 to 

+0.35) indicates high spatial variability in local hydrological conditions, surface characteristics, and 

proximity to plastic sources. 

 
Fig. 14. Relationship between Plastic Index (PI) and Precipitation.  

The trend line subsequently exhibits a gradual increase from the 10 mm minimum through the 

mid-range precipitation values (10-40 mm), reaching a secondary peak at approximately 40-45 mm 

(PI ≈ +0.10). This ascending limb of the curve suggests that moderate-to-high precipitation events 

may enhance plastic accumulation through several potential mechanisms. First, increased runoff 

volume during substantial rainfall events can transport plastics from diffuse upland sources to 

convergent flow paths and depositional zones within the landscape (Hurley et al., 2018). Second, 

higher precipitation totals may be associated with longer-duration storm events that facilitate the 

breakdown of larger plastic items into smaller fragments through physical abrasion, thereby 

increasing detection probability via spectral indices such as PI (Corcoran et al., 2009). Third, areas 

receiving moderate rainfall may support land use practices that generate plastic waste, such as 

intensive agriculture with plastic mulching or greenhouse cultivation (Steinmetz et al., 2016). 

Following this secondary maximum, the LOWESS curve displays a pronounced decline to near-

zero or slightly negative values at approximately 50 mm (PI ≈ -0.10), followed by another sharp 

increase to a tertiary peak at approximately 60-65 mm (PI ≈ +0.10 to +0.15). This oscillating pattern 
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in the high precipitation range is particularly intriguing and may reflect the complex interplay between 

transport capacity, dilution effects, and spatial patterns of land use. High-precipitation areas may 

experience enhanced flushing of plastic materials through well-developed drainage networks, leading 

to reduced local accumulation but increased downstream transport (Van Emmerik et al., 2018). 

Alternatively, the positive PI values observed at the highest precipitation levels could indicate areas 

where intense rainfall concentrates transported plastics in specific depositional environments, such as 

floodplains, retention basins, or coastal zones that serve as terminal sinks. 

The substantial vertical scatter of observations throughout the precipitation gradient, particularly 

evident in the 0-20 mm and 55-65 mm ranges, underscores the importance of factors beyond 

precipitation in determining plastic accumulation patterns. This variability likely reflects the 

confounding influences of land use intensity, population density, waste management infrastructure, 

topography, soil characteristics, and vegetation cover all of which modulate the relationship between 

rainfall and plastic transport-deposition dynamics (Horton et al., n.d.; Windsor et al., 2019). 

From a process-based perspective, the non-linear relationship revealed by this analysis suggests 

that plastic mobilization and accumulation across precipitation gradients cannot be adequately 

described by simple hydrological transport models. Instead, the data indicate threshold-dependent 

behaviors and regime shifts that likely correspond to distinct hydrological states: (1) a low-

precipitation regime characterized by limited transport capacity and localized accumulation near 

sources; (2) a moderate-precipitation regime where enhanced runoff facilitates both mobilization and 

redeposition; and (3) a high-precipitation regime where competing processes of transport efficiency, 

dilution, and concentrated deposition produce spatially heterogeneous outcomes. 

The management implications of these findings are significant. The positive association between 

certain precipitation ranges and elevated PI values suggests that plastic pollution monitoring and 

mitigation efforts should be intensified in areas experiencing moderate-to-high rainfall, particularly 

following significant storm events when transport and redeposition processes are most active. 

Furthermore, the high variability observed across all precipitation levels indicates that precipitation 

alone is insufficient to predict plastic accumulation patterns; effective management strategies must 

integrate hydrological factors with comprehensive land use planning, improved waste collection 

systems in high-rainfall areas, and strategic placement of sediment and debris retention structures to 

intercept transported plastics before they reach sensitive aquatic environments. 

The oscillating LOWESS pattern also raises important methodological considerations for future 

research. The presence of multiple local maxima and minima suggests potential threshold effects or 

regime shifts that warrant investigation through more sophisticated statistical approaches, such as 

segmented regression or mixture models, which can explicitly test for discontinuities in the 

precipitation-PI relationship. Additionally, temporal considerations such as antecedent moisture 

conditions, rainfall intensity versus duration, and seasonal patterns may further refine our 

understanding of how precipitation influences plastic accumulation dynamics.  

 

 

5. DISCUSSION 

 

Although the analysis was conducted over a relatively short observation period of 13 days, the 

results remain meaningful for interpreting the spatial distribution of plastic waste in relation to land 

use and land cover (LULC) characteristics. This is because LULC configuration represents a 

relatively stable structural control that governs plastic accumulation patterns, particularly along river 

corridors and adjacent built-up areas. While seasonal variability may influence the magnitude and 

mobility of plastic waste under different rainfall regimes, the underlying spatial relationships between 

plastic accumulation hotspots and dominant land-use types are expected to persist over time. Wet-

season conditions are likely to enhance plastic transport and redistribution through increased runoff, 

whereas dry-season conditions may promote localized exposure and accumulation within river 

channels. Consequently, the short observation window primarily limits temporal generalization rather 

than spatial inference. 
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The complex oscillating pattern observed in the precipitation Plastic Index (PI) relationship (Fig. 

14), characterized by multiple local maxima and minima without a consistent directional trend, likely 

reflects this temporal constraint. The pronounced vertical scatter across the precipitation gradient 

further indicates that temporal factors such as antecedent moisture conditions, rainfall intensity versus 

duration, and seasonal hydrological processes may exert a stronger influence on plastic transport 

dynamics than spatial precipitation totals alone. These findings suggest that precipitation effects on 

plastic distribution are event-driven and season-dependent rather than spatially uniform. 

In addition to temporal limitations, the spatial resolution of Sentinel-2 imagery (10–20 m) 

constrains the detection of small plastic fragments and the precise delineation of narrow riparian 

zones, as illustrated in Figure 3. Pixel-level aggregation may obscure sub-pixel heterogeneity in 

heterogeneous riverine environments, where localized plastic accumulation can be highly variable. 

Mixed pixels containing both contaminated and uncontaminated surfaces may yield intermediate PI 

values, potentially underestimating localized contamination and contributing to the residual scatter 

observed in the Random Forest model (Fig. 5; R² = 0.8892). Future studies should therefore integrate 

higher-resolution satellite data (e.g., PlanetScope at 3–5 m, WorldView at 0.3–2 m) or UAV-based 

multispectral imagery to improve spatial detail, detection accuracy, and the characterization of fine-

scale plastic accumulation patterns. 

Spectral confusion with similar materials remains a challenge. Dried vegetation, bright soil 

surfaces, sand deposits, construction materials, and light-colored substrates may exhibit reflectance 

characteristics that partially overlap with plastic materials. While the Random Forest model 

incorporating multiple spectral indices (NDVI, NDWI, NDBI, TI) achieves high overall accuracy (R² 

= 0.8892), residual spectral confusion cannot be entirely eliminated. Some positive PI values shown 

in Figure 3, particularly in areas with mixed land uses, may reflect spectral confusion rather than 

actual plastic accumulation. This issue is compounded for weathered or degraded plastics, which 

exhibit altered spectral properties compared to fresh materials. Future work should employ 

hyperspectral imaging to discriminate materials based on narrow-band spectral features and develop 

comprehensive spectral libraries of interfering materials under varying environmental conditions. 

Critical hydrological parameters were not incorporated into the analysis. The absence of river 

discharge and flow velocity data limits mechanistic interpretation of plastic transport dynamics and 

the extreme variability observed in Water Bodies (Fig. 12: PI ranging from -0.45 to +0.35). As 

discussed in the LOWESS analysis of Water Bodies (Fig. 14), the presence of substantial positive 

outliers (PI > +0.20) likely reflects convergent flow patterns, limited flushing capacity, or physical 

retention features. However, without discharge and velocity measurements, distinguishing between 

high-accumulation sites resulting from natural hydrological convergence versus those influenced by 

anthropogenic alterations remains challenging. Additionally, unmapped hydraulic structures (dams, 

weirs, check dams, water gates) may create artificial accumulation hotspots by altering flow regimes 

and creating zones of reduced velocity where plastics settle. The extreme positive PI outliers identified 

in certain water bodies may partially reflect the influence of such unmapped structures rather than 

solely natural processes. Future research should integrate continuous hydrological monitoring, 

comprehensive infrastructure mapping, and process-based modeling to develop mechanistic 

understanding of plastic transport pathways and retention mechanisms. 

The study did not differentiate plastic types, sizes, or polymer compositions. The aggregate PI 

values shown in Figures 11-12 represent a composite measure that cannot distinguish between 

macroplastics (>5 mm), mesoplastics (5-1 mm), and microplastics (<1 mm), which exhibit 

fundamentally different mobility patterns and environmental behaviors. Different polymer types 

possess distinct density, buoyancy, and degradation characteristics that influence transport dynamics 

and spatial distribution. As noted in the precipitation analysis (Fig. 14), enhanced runoff during 

substantial rainfall events may facilitate breakdown of larger items into smaller fragments through 

physical abrasion. However, without size and polymer differentiation, these processes cannot be 

quantified. Future research should incorporate field sampling and spectroscopic analysis (FTIR, 

Raman spectroscopy) for detailed plastic characterization and source attribution. 
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Socioeconomic variables (income levels, waste collection coverage, population density, 

behavioral factors) were not integrated but likely explain substantial intra-class variability. As 

demonstrated in Figure 11, Settlements exhibit a wide PI range (-0.05 to +0.30), with considerable 

scatter around the class median. The LOWESS analysis (Fig. 13) further confirms this heterogeneity 

through the substantial vertical scatter of individual observations around Settlements, which we 

attributed to "variations in waste management practices, population density, and socioeconomic 

factors across different settlement types." However, without high-resolution infrastructure data 

(locations of waste collection points, landfills, informal dump sites), the specific neighborhood-level 

factors driving this variability cannot be identified. The discussion of management implications 

emphasized targeting "densely populated settlement zones exhibiting the most extreme positive PI 

values," but operationalizing this recommendation requires socioeconomic data integration. Future 

studies should incorporate census data, municipal waste management records, and participatory 

mapping to explain intra-settlement variability and provide actionable policy insights. 

Missing data for Mixed Crops, Industrial Buildings, Dry Fields, and Plantations limits 

landscape-scale comprehensiveness. As noted in both Figures 12-14, only 6 of 10 LULC classes 

contain observations, creating gaps in understanding the complete spectrum of LULC-plastic 

relationships. Industrial Buildings are of particular concern, as they are expected to exhibit elevated 

PI values based on their association with manufacturing activities and packaging waste. The absence 

of these classes creates uncertainty regarding total anthropogenic contribution and may affect the 

management recommendations, which currently focus on Settlements as the primary intervention 

target without assessing industrial contributions. Future studies should employ stratified sampling 

designs ensuring adequate representation of all major LULC classes, particularly those with high 

anthropogenic activity. 

The spatial pattern analysis, while revealing non-linear relationships between PI, LULC, and 

precipitation, does not address the connectivity pathways that facilitate plastic transport between 

source and sink areas. The LOWESS analysis (Fig. 13) demonstrates an oscillating pattern with peaks 

at Settlements and Water Bodies separated by troughs at vegetated areas, suggesting a mosaic 

distribution pattern. However, understanding how plastics move from settlement sources through the 

landscape matrix to accumulate in specific water bodies requires spatial connectivity analysis 

incorporating topography, drainage networks, and flow routing. The management recommendation 

to establish "vegetated buffer zones to intercept plastic transport pathways" presumes knowledge of 

these pathways, yet the current analysis does not explicitly map them. Future research should employ 

landscape connectivity modeling and network analysis to identify critical transport corridors and 

optimal buffer placement locations. 

Future research should prioritize systematic multi-temporal monitoring to better capture 

seasonal dynamics and precipitation-driven plastic transport processes. Quarterly or seasonal time-

series analyses would allow robust comparisons between wet and dry periods and improve 

understanding of temporal variability in plastic accumulation patterns. In addition, rainfall-event–

based analyses focusing on extreme precipitation and high-runoff events are strongly recommended, 

as such events are likely to dominate plastic redistribution within river systems. Integrating remote 

sensing–derived plastic indices with hydrological modeling including discharge estimation, flow 

routing, and hydraulic structure characterization would further enable process-based interpretation 

and predictive assessment of plastic transport pathways. 

Beyond these core priorities, methodological improvements should include the use of higher 

spatial resolution data (e.g., UAV platforms or ≤5 m satellite imagery) to enhance detection of small 

plastic fragments and narrow riparian zones, as well as hyperspectral imagery and spectral library 

development to reduce false positives from spectrally similar materials. Additional advances may be 

achieved through plastic characterization by polymer type, size class, and degradation state via 

combined field sampling and laboratory analysis; integration of high-resolution socioeconomic and 

infrastructure datasets to explain intra-class variability and identify intervention priorities; stratified 

field sampling ensuring representation of all LULC classes, particularly Mixed Crops and Industrial 

Buildings; and spatial connectivity analysis incorporating topography and drainage networks to map 
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plastic transport pathways. Scenario-based modeling, evaluating the effectiveness of management 

interventions such as improved waste collection, debris interception structures, and riparian buffers 

under varying land-use and hydrological regimes, would further enhance the applicability of remote 

sensing-based plastic monitoring frameworks. 

 

 

6. CONCLUSIONS  

 

     This study demonstrates that the spatial distribution of plastic waste in Kendal Regency is 

predominantly governed by land use and land cover (LULC) characteristics rather than by 

precipitation dynamics. Plastic Index (PI) values exhibit clear gradients across LULC types, with the 

highest concentrations occurring in settlement areas reflecting intensive human activity, inadequate 

waste management infrastructure, and strong source zone characteristics. Water bodies function as 

dynamic transport corridors and accumulation zones, displaying extreme variability due to differences 

in hydrological connectivity, flow conditions, and proximity to upstream anthropogenic inputs. In 

contrast, vegetated landscapes such as dryland forests, mixed plantations, and scrub consistently 

exhibit negative PI values, confirming their role as natural buffer zones that limit plastic transport and 

deposition. 

     The LOWESS analyses further reveal that the relationship between precipitation and PI is highly 

non-linear, characterized by multiple inflection points and substantial scatter, with no significant or 

consistent trend. These patterns indicate that short-term rainfall totals measured independently of 

hydrological processes such as flow velocity, runoff pathways, and storm intensity do not exert a 

dominant influence on plastic accumulation within the study period. Instead, plastic distribution is 

shaped by spatially explicit drivers, including land cover configuration, river connectivity, and 

localized human pressures. 

     The integration of Sentinel-2 imagery, CHIRPS rainfall data, and Random Forest modeling results 

in a robust remote-sensing–based framework for detecting and analyzing riverine plastic pollution. 

Model performance was consistently strong (R² = 0.8892), confirming the utility of multispectral 

indices and machine learning for mapping plastic waste at landscape scales. However, the pronounced 

intra-class variability especially in settlements and water bodies emphasizes the need for higher-

resolution spatial data, improved hydrological characterization, and incorporation of socioeconomic 

factors in future research. 

     Overall, the findings underscore that effective mitigation strategies in Kendal Regency should 

prioritize land-based interventions in densely populated and industrially influenced areas, strengthen 

waste management systems, and protect or expand vegetated riparian buffers to intercept plastic 

transport. Since precipitation alone does not predict plastic accumulation, integrated land-use 

planning, targeted source reduction, and hydrologically informed monitoring are essential to reducing 

downstream plastic flows and safeguarding riverine and coastal ecosystems. 
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