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ABSTRACT

Predicting rainfall in large, heterogeneous watersheds remains among the most important hydrological
challenges. This research investigates the effectiveness of both ML (Machine Learning) and DL (Deep
Learning) for predicting spatiotemporal rainfall in the Bengawan Solo watershed, Indonesia. Satellite
rainfall data from CHIRPS (spatial resolution: 0.05°) were prepared and sampled for the period 1981—
2024. The data set contained 523 grid points. We employed nine ML and DL algorithms: Random
Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), Multilayer
Perceptron (MLP), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal
Convolutional Network (TCN), Convolutional Neural Network (CNN), and Transformer. Models were
trained on the samples from 1981 to 2019 and tested on 2020-2024. Performance was judged from
mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE),
and coefficient of determination (R?). XGB showed the best overall performance (MAE =59 mm; R?
~0.73). GRU became the most competitive DL model at 60 mm (MAE ~60 mm; R? ~0.72). Temporal
model analysis shows that XGB and GRU stay among the top three models with the minimum monthly
errors. TCN, CNN, and Transformer exhibited higher errors and more monthly variability. XGB and
GRU have average MAE values of ~59-60 mm and R? values of ~0.71-0.72 across most grids. MAE
values for TCN, CNN, and Transformer are greater than 76 mm, while R? values are lower. The data
we obtained indicate that using ensemble decision tree models and recurrent neural networks across
large tropical areas yields greater stability and more reliable spatiotemporal rainfall predictions than
more sophisticated DL architectures.

Keywords: Rainfall prediction;, Machine learning; Deep learning; CHIRPS,; Bengawan Solo; Spatial
analysis; Temporal analysis.

1. INTRODUCTION

Rainfall prediction is essential for effectively planning water resources, managing disasters, and
managing agricultural areas in the tropics (Hong et al., 2018; Praveen et al., 2020). The Bengawan
Solo watershed in Indonesia is an area critical to food security, water supply, and flood control
(Musiyam et al., 2025). The watershed is a large, socio-economically critical watershed where rainfall
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variability directly affects water availability for irrigation and is closely linked to recurrent
hydrometeorological impacts on agriculture and a large population. The basin also exhibits
pronounced physical heterogeneity, ranging from flat plains to hilly and volcanic terrain, with diverse
soils and land uses, producing strong spatial contrasts in hydrological response and making rainfall
prediction more challenging at scale (Santhyami et al., 2025). Thus, long-term rainfall data and
rainfall predictors are crucial. Nonetheless, the effects of high climatic variability, topographical
complexity, and limited field observation data are major obstacles to the long-term accuracy of rainfall
prediction (Funk et al., 2015; Kundu et al., 2022).

Data-driven methods have revolutionized hydrometeorological modeling over time. Machine
Learning (ML) methods such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support
Vector Regression (SVR), and Multilayer Perceptron (MLP) to examine in depth the associations
between predictive variables and rainfall predictors (Sachindra et al., 2018; Miao et al., 2021) are
used more frequently to discover nonlinear relationships between predictors and rainfall.
Concurrently, deep learning (DL) approaches like Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), Convolutional Neural Network (CNN), Temporal Convolutional Network
(TCN), and Transformer architectures depict complex spatio-temporal patterns in climate time series
(Shi et al., 2015; Chattopadhyay et al., 2020; Espeholt et al., 2022).

Many studies have shown that DL techniques have great potential for accurately modeling
hydrometeorological phenomena (Aswin & Geetha, 2020; Hernandez et al., 2021), including the
prediction of severe and rare rainfall events (Laptev et al., 2017; Lim & Zohren, 2021). But most of
that performance depends on the vastness of the data in terms of temporal depth, with a fairly uniform
spatial distribution. In data-limited regions, DL models are often weak under time-series conditions
due to overfitting, poor training, and generalization issues (Willard et al., 2021; Das et al., 2022).
Although ML and DL techniques have made significant progress in predicting rainfall, quite a few
research gaps still exist. Comparative studies assessing the performance of ML and DL in tropical
regions, such as the Bengawan Solo River Basin, with complex spatial and even topographical
features, are limited, especially when using high-resolution satellite data (such as CHIRPS) to inform
annual rainfall forecasting.

Furthermore, it is rare for model training to rely on long time series, spanning 40 years or more,
despite the fact that long time spans are necessary to account for long-term climate dynamics and
interannual variability that impact prediction accuracy (Gu et al., 2020). Furthermore, spatially and
temporally differentiated error analysis is underused, even though it is important to identify specific
locations and time intervals of model inaccuracy to better prepare for the next model (Cioffi et al.,
2023). To fill in the gap, this study conducted a comprehensive evaluation of nine ML and DL models
using monthly CHIRPS data for 1981-2024, aggregated to annual rainfall at 98 sample points in the
Bengawan Solo watershed. Models were trained on historical data and tested on 2020-2024
conditions, with metrics including MAE, RMSE, MAPE, R?, spatial errors, and temporal errors. The
best-performing model was then adopted as the basis for predicting annual rainfall for 2025-2030. In
conclusion, this study assesses the predictive performance of ML and DL in the Bengawan Solo
watershed region, using the long-term CHIRPS (1981-2024) and 2025-2030 periods to estimate
annual rainfall and to determine which method is best suited to tropical regions with scarce data. The
literature shows that when remote sensing series are discontinuous, statistical interpolation
approaches can reconstruct long-term trajectories useful for analysis (Haidu et al., 2024).

2. METHOD
2.1. Study Area

The Bengawan Solo River Basin (Fig. 1) is the largest river system on Java Island, covering an
area of approximately 16,100 km? and serving as the primary source of water for domestic needs and
agricultural irrigation. Hydrologically, the watershed is divided into three sub-basins: the Upper
Bengawan Solo, the Madiun River, and the Lower Bengawan Solo.
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Fig. 1. Study Area and Sample Points.

Its upstream area (approximately 6,000 km?) lies between 110°13'7.16"-110°26'57.10" East
Longitude and 7°26'33.15"-8°6'13.81" South Latitude, with predominantly flat topography but
undulating in the northeast-northwest near the mountains; flow supply comes from the Merapi—
Merbabu volcanic complex in the west and Mount Lawu in the east. The contrasting topographic
variations and land use, as well as the occurrence of seasonal floods and droughts, make the Bengawan
Solo River Basin a priority location for hydrometeorological studies and water resources management
planning (Jumadi et al, 2024; Jumadi et al, 2025).

2.2. Research Framework

This research was conducted in several stages, including data collection, preprocessing, annual
rainfall prediction using ML and DL, model evaluation (using data from 2020-2024), selection of the
best model, prediction for 2025-2030, data aggregation, interpolation, and spatiotemporal analysis
(Fig. 2).

2.3. Data and Data Sources

Data aggregation, interpolation, and spatiotemporal analysis were performed in several stages.
The study took advantage of satellite rainfall data collected from the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) product, issued by the Climate Hazards Center at the University
of California, Santa Barbara (Funk et al., 2015). CHIRPS is a global precipitation dataset for rainfall
estimation with high spatial resolution (~0.05°, or +5 km) and long time span (1981 to present). This
is a global dataset of infrared satellite observation data, reanalysis data, and rainfall data from land
stations. This hybrid allows CHIRPS to generate consistent rainfall estimations, even in parts of the
world where ground observation networks are weak such as Indonesia (Ceccherini et al., 2015; Gu et
al., 2020). In hydrology, the comparative evaluation of monthly gap imputation methods has proven
essential for the stability of analyses (cf. monthly flow study), which supports our focus on the
continuity of series (Magyari-Séaska et al., 2025).
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Fig. 2. Research Framework.

The selection of CHIRPS for this study involved three elements. First, its high spatial resolution
allows for a better representation of rainfall variability in areas with complex topography such as the
Bengawan Solo River Basin. Second, its time series spanning more than four decades (1981-2024)
allows a better understanding of long-term trends and interannual climate variability. Third, the
availability of open-access data that is routinely updated enables replication of models as well as
future updates, which is the key principle of data openness in scientific research (Huffman et al.,

2020).
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2.4. Determination of Prediction Points

All pixels from CHIRPS were extracted in order to allow for the model prediction to capture
spatial variety of rainfall throughout the Bengawan Solo watershed (Fig. 1). The choice of this method
was motivated by its ability to provide an even distribution of points across the study area, eliminating
spatial bias when observation points cluster around specific positions (Hijmans et al., 2005). The
result was 523 points, evenly distributed over the basin. Each point's geographic coordinates were
recorded, and a monthly rainfall time series spanning 44 years (1981-2024) was used. This technique
is also helpful for error analysis in spatial contexts and is central to this study. An analysis of accuracy
disparities, including from edge vs. center of the watershed (or lowlands vs. mountains) can be made
under equal spreading of points.

2.5. Development and Configuration of Machine Learning and Deep Learning Models

The development of an annual rainfall prediction model in this study involves two main
approaches, namely Machine Learning (ML) and Deep Learning (DL). The selection of these two
groups of methods is based on the consideration that ML has advantages in handling medium-sized
datasets with relatively limited feature space, while DL is designed to extract complex patterns from
extensive, temporal, or spatial data (Goodfellow et al., 2016; Zhang et al., 2022). The
hyperparameterization of the model is presented in Table 1.

2.5.1. Machine Learning Model

Four ML algorithms, such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support
Vector Regression (SVR), and Multi-Layer Perceptron (MLP), are applied. RF was selected because
it can accommodate non-linear relationships and reduce the overfitting of medium-sized datasets
(Breiman, 2001). Some important parameters, such as the number of trees (n_estimators) and the
maximum tree depth (max_depth), were optimized using grid search. A gradient boosting method
called XGB was selected for its ease of computation and ability to handle noisy data (Chen &
Guestrin, 2016).

The learning_rate, max_depth, and number of estimators were fine-tuned for the validation data
to minimize the error. SVR was employed for testing the performance of kernel-based approaches,
which map data to higher-dimensional spaces to model nonlinear relationships (Smola & Schélkopf,
2004). The radial basis function (RBF) kernel was used, and the parameters C and gamma were
determined via parameter search. For the ML group, we utilized MLP as a shallow neural network-
based baseline. The MLP architecture had multiple hidden layers, combined with ReLU activation
functions and a linear output layer for regression.

2.5.2. Deep Learning Model

Time and space structures in the data are processed over five different DL models: Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal Convolutional Network (TCN),
Convolutional Neural Network (CNN), and Transformer. To make use of LSTM, this model features
two sequential LSTM layers with dropout to reduce overfitting. GRU is a simpler yet computationally
efficient variant of LSTM (Cho et al., 2014).

The number of hidden units and dropout rate parameters were optimized based on validation
performance. TCN was proposed as a non-recurrent alternative to time-series modeling with dilated
causal convolutions, facilitating long-term dependency modeling (Bai et al., 2018). A CNN was
applied to extract local temporal features from monthly rainfall data, using a 1D convolutional layer,
pooling, and dense layers. Transformer is applicable to investigate the capability in fitting temporal
dependencies without sequential restriction induced by the self-attention mechanism (Vaswani et al.,
2017). The design involved a sequence of encoder layers combining multi-head attention and
normalization.
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Table 1.

ML and DL Hyperparameters.

Model Type Input window Key hyperparameters / architecture
RandomForestRegressor(n_estimators=100,

. random_state=42); other parameters use scikit-learn

RF ML 12: ;1)10nths (24 rainfall defaults (e.g., max_depth=None, min_samples_split=2,

& min_samples_leaf=1, max_features="sqrt",
bootstrap=True).
XGBRegressor(n_estimators=100, random_state=42);
other parameters follow XGBoost defaults (e.g., typical

XGB ML 24 months defaults such as max_depth=6, learning_rate=0.3,
subsample=1.0, colsample bytree=1.0,
objective="reg:squarederror" depending on library
version).

SVR ML 24 months SVR() with smklt-lear‘"n defziults: kernel="rbf", C=1.0,
epsilon=0.1, gamma="scale", degree=3.
MLPRegressor(hidden layer sizes=(64, 32),

MLP ML 24 months maxilter=50.0, r.ando"rnfsty?te=42); <')'ther p?rameters follow
defaults: activation="relu", solver="adam",
learning_rate init=0.001, alpha=0.0001, etc.
Input(shape=(24, 1)) — LSTM(64, activation="relu") —
Dense(1, activation="linear"); compiled with

LST™M DL 24 months (24 > 1) optimizer="adam", loss="mse"; trained for epochs=60,
batch_size=32.

Input(shape=(24, 1)) — GRU(64, activation="relu") —

GRU DL 24 months Degse_(l, a?'tlvatlc')'n: I’eh'l' ); csmpl}ed with
optimizer="adam", loss="mse"; trained for epochs=60,
batch_size=32.

Input(shape=(24, 1)) — TCN(nb _filters=32,

TCN DL 24 months kerpel__smeﬁ, dllﬁthl’lS:[ll, 2, 4,.8]) - D.ense(nl, .
activation="linear"); compiled with optimizer="adam",
loss="mse"; trained for epochs=60, batch size=32.
Input(shape=(24, 1)) — Conv1D(64, kernel_size=3,
activation="relu", padding="causal") —
BatchNormalization() — Conv1D(32, kernel size=3,
activation="relu", padding="causal") —

CNN DL 24 months BatchNormalization() — GlobalAveragePooling1D() —
Dense(1, activation="linear"); compiled with
optimizer="adam", loss="mse"; trained for epochs=60,
batch_size=32; predictions clipped to non-negative values
during recursive forecasting.

Input(shape=(24, 1)) —
transformer encoder(head size=8, num_heads=2,
Transformer DL 24 months ff dim=32, dropout=0.1) — GlobalAveragePooling1 D()

— Dropout(0.1) — Dense(1, activation="linear");
compiled with optimizer="adam", loss="mse"; trained for
epochs=60, batch_size=32.




103

2.5.3. Implementation

All models were developed using Python with scikit-learn, TensorFlow, pandas, numpy, and
several other libraries. Model training and prediction were performed on Google Colaboratory Pro
using high-RAM cloud devices to speed up computation (https://tinyurl.com/y23kfsyh). Each model
generates monthly rainfall predictions at 98 sample points, which are then aggregated into annual
totals for performance evaluation and spatio-temporal analysis of prediction errors.

2.6. Model Training, Validation, and Evaluation Scheme

The model's training and validation methods were developed specifically to ensure that the
predicted findings were statistically sound and robust to annual climate variability in the Bengawan
Solo River Basin. The dataset was split into two time subsets: the training period (1981-2019) and
the validation period (2020-2024). This separation was done chronologically (time-based split) to
avoid data leakage, as future data would otherwise be used for model training. This is frequently used
to make time series predictions, as seasonal patterns and climate trends may evolve (Hyndman &
Athanasopoulos, 2018). For training purposes, all models were trained on 523 normalized points from
monthly rainfall data.

We configured the data in a temporal order (24 months) for deep learning-based models that
could capture long-term dependencies. The performance of our model is evaluated with four overall
criteria: Mean Absolute Error (MAE) (Equation 1), Root Mean Squared Error (RMSE) (Equation 2),
Mean Absolute Percentage Error (MAPE) (Equation 3), and coefficient of determination (R?)
(Equation 4). Such composite metrics are chosen to provide a complete picture of the model: an
absolute accuracy rate, the reliability of these measures, and the proportionality of all errors. In
general, these metrics measure the difference between the predicted value (¥;) and the observed value

i)
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1 .
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. =Z?=1(yi _}A,i)z ........................................................................... )

NINCARE AL

The evaluation results were interpreted by applying the average metric values across all sample points
to identify the model with the best overall performance. The model with the best performance during
the validation period was selected and used to produce annual rainfall projections for 2025-2030.

2.7. Creation of Spatial Maps of Rainfall Projections with IDW
The final stage of this research methodology is to translate rainfall forecasting results for the year

into spatial representations, such as maps. This spatial visualization is critical for understanding the
distribution of rainfall across geographical intervals, which is not available from prediction value
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tables alone. To accomplish this, the Inverse Distance Weighting (IDW) interpolation technique was
selected, as it is simple, flexible for handling irregular data, and works well for environmental
variables with pronounced spatial autocorrelation, such as rainfall (Lu & Wong, 2008; Phoophathong
et al., 2025).

The interpolation process was carried out separately for each projection year (2025-2030) and
for each prediction model. For each projection year, annual rainfall at each sample point was first
obtained from the monthly predictions. Aggregation is performed by summing the monthly rainfall
predictions (in millimeters) at each sample point for the period from January to December of each
year, specifically for the projection years 2025 to 2030. The IDW is implemented in ArcGIS 10.8,
using the geographic coordinates of 523 sample points and the corresponding yearly prediction values
as inputs. To address this, we use the WGS 84 projection system; it helps preserve compatibility with
CHIRPS data while preventing distortion due to distance. The output grid resolution was set to 0.01°
(~1 km) to achieve sufficient spatial detail without overloading the computation. The IDW map
outputs were then spatially analyzed to identify areas with significant rainfall increase and decrease
trends during the projection period.

3. RESULTS
3.1. Model Performance Comparison

A set of nine annual rainfall prediction models was evaluated for their performance for the 2020—
2024 validation period based on four main metrics, namely Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and coefficient of determination
(R?) (Fig. 3). These results indicate that XGBoost (XGB) performed the best at all metrics. The MAE
and RMSE of 59 mm and 80 smm, respectively, indicate low absolute and quadratic errors, and the
model has an R? of 0.73, indicating excellent ability to explain the variability in annual rainfall.

MAE by Model RMSE by Model
100
E E 75

w &
<Z( E 50
25
0
Model Model
R? by Model MAPE by Model

Model Model

Fig. 3. Measurement error results for all models.
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Of the two models, Extreme Gradient Boosting (XGB) ranked 2nd, with an MAE of 55.140 mm
and an R? of 0.767. XGB handled data non-linearity well but performed slightly worse than RF. XGB
is sensitive to the learning rate and the number of trees, which is likely to cause instability in
predictions for long-term datasets where year-to-year data exhibits high variation. We have seen that
the Multi-Layer Perceptron (MLP), with an MAE of 46.762 mm and an R? of 0.817, performed
relatively well, although lower than RF. The lower strength of MLPs compared to ensemble-based
models like RF is attributed to the poor ability of feedforward ANNSs to capture long-term temporal
patterns without a direct memory mechanism (Wu et al., 2010). Although performance was surprising,
with sequence-based models (e.g., LSTM, GRU, TCN, CNN, and Transformer) achieving very high
MAE (>88 mm, up to 202 mm for LSTM, TCN, CNN, and Transformer), some architectures also
yielded negative R? values.

Such excessive overfitting is likely an effect of the time series being too short, even though it
spans 44 years, for detecting stable annual climate patterns in complex DL architectures with a large
number of parameters (Lim & Zohren, 2021). This condition aligns with the results of Laptev et al.
(2017), who note that DL forecasting models for meteorological time series require hundreds of
thousands of observations or hundreds of years of simulation data to generalize consistently. These
findings support the idea that ensemble-based machine learning models, such as RF, remain more
stable in tropical environments with limited data. These results serve not only as a technical
framework for hydrology researchers and practitioners but also contribute to the literature by showing
the practical limitations of DL in low-data areas and by pointing to opportunities for future study to
develop lighter DL architectures and more realistic regularization.

3.2. Spatial Error Analysis

Spatial error analysis was performed to understand the distribution of prediction errors at 523
sample points in the Bengawan Solo watershed during the 2020-2024 validation period (Fig. 4-7).
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This is critical, given that although aggregated metrics (e.g., MAE, RMSE) provide a baseline
picture of model performance, the distribution of errors at spatial scales often reveals
underperformance not evident at the aggregate level (Cioffi et al., 2023).

Values of the MAE for points indicate that the error distribution is not homogeneous. Despite the
fact that the Random Forest (RF) model generally achieves the best results, it still exhibits localized
spatial error distribution, especially at key points in the watershed in the east and west. The points are
usually in the parts of the area that are more diverse in topography, e.g., in the foothills of Mount
Lawu to the east and hills in the northwest. These topographic differences probably impact the
precision of CHIRPS satellite rainfall predictions and the precision of model predictions, respectively.
On the other hand, in the central plains of the watershed, where the topography is similar and near the
main Bengawan Solo River, there are lower prediction errors.

This suggests that the model is more adept at learning the relationship between the historical
rainfall data and prediction patterns in regions free from extreme topographic gradients. Other, e.g.,
those models used, such as XGB and MLP, exhibit error patterns as in the RF, but they generate more
error intensity in almost all locations. With the SVR model, the error distribution is scattered and not
so well matched to the topography pattern, which reflects its sensitivity to the high variation of
training data. Moreover, deep learning-based models, namely LSTM, GRU, TCN, CNN, and
Transformer, have large average errors and spatial instability. There exist very large errors in points
in mountain regions and in transition zones between mountains and plains that exceed the watershed
mean MAE by more than 3 times. This confirms the overfitting assumption in DL, which occurs when
the model cannot learn spatial variability effectively.

The data also supports this observation with an increased error gradient on the MAE distribution
map for IDW interpolation results towards east and west of the watershed boundaries. This fact
appears to be in line with earlier works (Funk et al., 2015; Gu et al., 2020), which found that satellite-
based rainfall prediction is more prone to vary when the orographic environment and the number of
rainfall stations in the location are not very high.
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Fig. 8. Boxplot Comparison of Error Metrics.

This spatial study has a practical dimension, as it implies that, even though RF is technically well-
known for its worldwide performance, it could still be improved by integrating CHIRPS data with
higher-resolution data or by pre-conditioning the model to mitigate topographical bias. In addition,
model evaluation can always be conducted to consider the spatial, not overall, aspect, in order to
detect and target prediction failures in some regions for future study.

The spatial error comparison boxplot (Fig. 8) reveals the marked disparity between models in
accounting for the variability in precipitation at 523 grid points in the Bengawan Solo watershed. On
average, XGB and GRU have the lowest median MAE and RMSE, and their interquartile ranges
(IQRs) are rather narrow, which implies good and constant (or comparable) performance in most
locations. RF marginally is behind (median MAE slightly higher; upper tail slightly longer), but it
also outperforms SVR and MLP by a long margin of difference because both have larger errors and
wider distributions. On the other hand, convolutional and attention-based deep learning models (TCN,
CNN, Transformer) seem obviously less robust: median MAE and RMSE are high, interquartile
ranges are wide, and the large number of extreme outliers suggests spatial instability and no ability to
follow rainfall trends for some grids. The boxplot pattern only confirms that the decision tree
ensembles and GRUs are spatially superior to the more complex deep learning architectures used with
the dataset.

3.3. Temporal Error Analysis

Temporal error analysis was performed to evaluate variation in model performance over time
during the 2020-2024 validation period (Fig. 9-12). This approach aims to identify specific periods
during which the model degrades in accuracy, thereby providing deeper insights into seasonal factors
and extreme climate events that affect predictions (Zhou et al., 2022).

Results from temporal evaluation show that the XGBoost (XGB) model, which has good overall
performance, tends to have more prediction errors during transitional months (March—April and
October—November, for example).
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At these junctures, monsoon variations in predominant wind directions and erratic weather
patterns also occur in areas of tropical Indonesia such as the Bengawan Solo watershed. Because these
patterns are not completely periodic, the abrupt changes in rainfall intensity and location can be hard
to capture in models based on historical data due to the fact that these patterns are highly influenced
by global climate variability such as El Nifio—Southern Oscillation (ENSO) and Indian Ocean Dipole
(I0OD) (McBride et al., 2003; Lestari et al., 2021).

Major mistakes are also found in years characterized by extreme climate anomalies. That is, for
example, from October to December 2020 (strong La Nifia), rainfall was well above normal, leading
to large discrepancies between predictions and observed rainfall. On the opposite hand, in 2023 (a
drier year as we have seen in the rain shadow of El Niflo), there were errors early in the rainy season
with the model predicting heavy rainfall, yet the rainfall did not match the average. RF and GRU
models have temporal trends similar to that of XGB, except they oscillate with error a little further.
In contrast, convolutional and attention-based deep learning models (TCN, CNN, Transformer) show
greater, less stable errors over time, because some models have very high sensitivity to monthly
outliers, and one or two “bad” months can significantly increase the overall error.

Overall, this pattern confirms that all models really struggle with rainfall prediction during
transition seasons or extreme climate processes. In terms of temporal and operational challenges,
these relate primarily to (1) the inability to better capture long-term climate variability, despite
employing a 44-year time series, and (2) monthly temporal resolution, which fails to fully reflect the
intra-monthly dynamics affecting rainfall accumulation.

3.3. Prediction Results

Spatial predictions of annual rainfall with different models (RF, XGB, SVR, MLP, LSTM, GRU,
CNN, TCN, Transformer) exhibit a fairly consistent distribution pattern in the upper Bengawan Solo
region, but with varying intensities between models (Fig. 13). Overall, the spatial dynamics of
traditional ML models (RF in particular) display relatively smoother and more stable spatial patterns,
whereas DL models like LSTM, GRU, and CNN exhibit sharper spatial fluctuations, especially in
mountainous areas. The spatial distribution indicates that the highest annual rainfall is anticipated to
occur in areas adjacent to the Merapi, Merbabu, and Lawu mountains. It mirrors the orographic
conditions in the area, in which moist air rising produces higher orographic rainfall. In contrast, the
central part of the watershed tends to have lower and more homogeneous rainfall. These are consistent
with the RF, XGB, and MLP models, and in fact, DL models like CNN or Transformer often result
in extreme predictions at certain points, which can be attributed to overfitting issues.

The differences between the two models are apparent in the sharpness of the spatial gradients.
DL-based models typically can be “sensitive” to local variations, so that predictions are usually quite
heterogeneous. This might prove their capacity for finding local anomalies, but it also poses
possibilities of instability in predicting. When compared to this, RF models give smoother
distributions, which can be practically put to use (like water planning, flood reduction, etc). This
phenomenon is also in line with the results of Chen et al. (2022) and Zandi et al. (2022): model
integration must balance the trade-off between generalization and spatial sensitivity.

In sum, the spatial results of models show that traditional machine learning models such as
Random Forest (RF), Extreme Gradient Boosting (XGB), and Multi-Layer Perceptron (MLP) are
effective in keeping spatial rainfall predictions stable and provide consistent and relatively
homogeneous distributions in nearly every region of the Bengawan Solo watershed.

On the other hand, in the case of deep learning models, Long Short-Term Memory (LSTM),
Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and Transformer, the prediction
variability is higher and is likely to give large values at multiple places, particularly where orographic
complexity is high. Another interesting discovery was that the largest spatial variations are found in
mountainous zones. This emphasizes the necessary relevance of topographical parameters and/or
orographic processes for the calibration process and the construction of spatiotemporal rainfall
prediction models in tropical regions.
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Fig. 13. Spatial Prediction Results for Annual Rainfall 2025-2030 for all models.

4. DISCUSSIONS

This work demonstrates that the decision tree-based gradient boosting models, with XGBoost
(XGB), are most trustworthy for predicting spatiotemporal rainfall for the Bengawan Solo River
Basin. XGB is the most consistent in providing overall accuracy (MAE =~ 59 mm; RMSE ~ 80 mm;
R? = 0.73), followed by RF and GRU for both temporally (month-to-month) and spatially (location-
to-location) data. The supremacy of the XGB-RF relationship agrees with that of CHIRPS satellite
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rainfall data in tropical regions, where rainfall strongly, but not linearly, correlates with its controlling
features and is subject to noise and observational bias. In this light, ensemble decision trees are very
powerful since they can capture nonlinear interaction in a complicated way without strict
distributional assumptions, and they provide less sensitivity to hyperparameter selection than large-
capacity deep learning models (Breiman, 2001; Hong et al., 2021; Sachindra et al., 2018). Bagging
and boosting mechanisms help the model to smooth out local uncertainties between trees, leading to
stable predictions over 523 grids with a vast variation in topography and microclimates.

Comparison with the literature shows that these findings are consistent with previous studies
reporting the superiority of ensemble decision tree models for highly variable hydrometeorological
data. Hong et al. (2021) and Sachindra et al. (2018) demonstrated that RF and gradient boosting
models tend to outperform other nonlinear methods when data are limited, spatially heterogeneous,
and contain difficult-to-model noise. In this study, despite the long temporal sample size (44 years),
the spatial sample size was only 523 grid points within a single watershed, so the sample-to-parameter
ratio was much more favorable for decision tree models than for very deep deep learning architectures.
These results reinforce that, for data configurations like this, a “moderate but robust capacity” strategy
is more effective than “very large capacity but highly dependent on data volume and diversity.”

On the other hand, deep learning models exhibit more diverse behavior. GRU emerged as the
most competitive deep learning model, with performance close to XGB (R? = 0.72) and fairly good
temporal stability. This indicates that lighter recurrent architectures with fewer parameters, such as
GRUs, are more suitable for moderate-length monthly time series because they require fewer
parameters to learn and are easier to calibrate. Conversely, LSTM showed performance not far from
MLP and SVR. At the same time, convolutional and attention-based architectures (TCN, CNN,
Transformer) tended to have higher MAE and RMSE and lower R? with significant variability in
errors across months and locations. This pattern aligns with findings by Chattopadhyay et al. (2020),
Aswin & Geetha (2021), and reviews by Lim & Zohren (2021), which state that advanced deep
learning, especially CNN and Transformer, only show clear advantages when: (i) the temporal
resolution is very high (daily or sub-daily), (ii) the sample size is very large, and (iii) additional rich
spatial/climate information is available. For monthly resolution and limited domains such as a single
watershed, this large capacity can easily lead to overfitting and instability.

Spatial analysis of error distribution confirms that XGB and GRU not only outperform on average
but are also more robust across most of the watershed area. Both models maintain an average MAE
of 59—60 mm and an R? of 0.71-0.72 across most grids, while RF lags slightly behind with marginally
worse MAE and R2. Conversely, TCN, CNN, and Transformer show much higher spatial MAE (=76—
85 mm) and lower R? (=0.38-0.50), with many grids performing near or even below the climatological
baseline. The spatial error patterns also reveal that areas with steep topographic gradients, such as the
slopes of Merbabu, Merapi, and Lawu, as well as the upper reaches of the watershed, tend to have
higher errors. This is consistent with studies by Gu et al. (2020) and Funk et al., which indicate that
satellite-based rainfall estimates in tropical mountainous regions are often biased due to sensor
limitations in capturing small-scale convective clouds and complex orographic effects. Therefore,
some of the errors observed across all models, including XGB and GRU, also reflect the limitations
of the “ground truth” rainfall representation itself.

From a temporal perspective, the analysis of monthly MAE and RMSE shows that all models
exhibit higher errors during the monsoon transition months (March—April and October—November)
and in years with strong climate anomalies (e.g., La Nifla 2020-2022 and El Nifio 2023). In these
conditions, rainfall intensity and distribution change rapidly and often do not follow periodic patterns
that can be captured by models based on historical time series. Nevertheless, XGB and GRU are
relatively consistent in maintaining the highest performance rankings across most months, while
TCN, CNN, and Transformer exhibit sharp, unstable error spikes. This indicates that the capacity to
model short-term non-linearity alone is not sufficient; models must also be able to generalize to rare
but impactful climate regime changes. These findings align with McBride et al. (2003) and Lestari et
al. (2021), which emphasize that rainfall variability in Indonesia is heavily influenced by ENSO and
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10D, making purely time-series-based local models potentially struggle when faced with rare extreme
events.

Compared to other regions, model performance patterns in the Bengawan Solo River Basin show
a strong correlation with the hydrometeorological context and data structure. In the North-Western
Himalayas, dominated by steep mountainous topography with sharp elevation gradients, multivariable
daily station data, and a time span of 1980-2021, DL models (specifically Bi-LSTM and LSTM)
provide the lowest RMSE/MAE and outperform ML, while among ML models, ANN and KNN
outperform RF and SVR, and accuracy is highly sensitive to elevation (Wani et al., 2024). In five
large UK cities with a temperate maritime climate and hourly rainfall data, Stacked-LSTM and
Bidirectional-LSTM architectures also reportedly outperform XGBoost and ML ensembles, although
they still struggle to capture very abrupt rainfall surges (Barrera-Animas et al., 2022).

Conversely, a study in the Aligarh District of India showed that for daily and monthly rainfall
with standard meteorological predictors, CatBoost and RF provide strong correlation and outperform
SVR, confirming the reliability of tree ensembles for more aggregated time scales (Abdullah & Said,
2025). In African cities with humid tropical to dry Mediterranean climates, DL (especially single
RNN) performs best for highly non-linear daily rainfall, with relative humidity and antecedent rainfall
as key predictors (Samson & Aweda, 2025). In this context, the dominance of XGB, RF, and GRU in
monthly CHIRPS-based Bengawan Solo annual rainfall prediction can be understood as a
consequence of a combination of: a tropical monsoon climate with a strong monsoon but averaged
daily pattern, watershed-scale orographic heterogeneity, and limitations of atmospheric predictors,
thus significantly reducing the advantages of very deep DL architectures compared to other regions
and time scales.

In terms of data validity, CHIRPS is supported by a broad body of validation studies across very
different hydroclimatic settings. At the global scale, a recent synthesis shows that CHIRPS generally
attains correlations above 0.7 at monthly and seasonal scales and is widely judged suitable for
hydroclimatic analysis, with reduced skill mainly in very arid and high-mountain regions (Du et al.,
2023).

Regionally, CHIRPS has been shown to outperform or rival reanalysis and other satellite products
in complex tropical and subtropical terrains: for example across Ethiopia, where it consistently
outperforms ERAS and reproduces the seasonal cycle and interannual variability (Ahmed et al., 2024;
Geleta & Deressa, 2020), in the tropical Andes and Antioquia where it captures orographic gradients
and ENSO-related variability (Lopez-Bermeo et al., 2022; Rivera et al., 2018), in the Amazon basin
where annual totals are reproduced with R? ~0.98 (da Motta Paca et al., 2020), over the Qinghai—Tibet
Plateau where CHIRPS compares favorably with MSWEP at monthly scales (Liu et al., 2019), and in
semi-arid and drought-prone regions such as Northeast Brazil and eastern Africa (Paredes-Trejo et
al., 2017; Dinku et al., 2018). These studies consistently report that CHIRPS performs best for
monthly—annual aggregates and large-basin applications, while underestimating some local extremes,
a trade-off that aligns with our use of 0.05° monthly CHIRPS data aggregated to annual rainfall over
a large tropical watershed.

Several limitations of this study should be noted to contextualize the results. First, the temporal
resolution of the input data is limited to monthly aggregation, so intra-monthly dynamics, such as
daily extreme rainfall intensity or consecutive rainfall events, are not explicitly represented, even
though these phenomena significantly contribute to monthly accumulation. Second, although 523 grid
points provide much better spatial coverage than 98 points, the representation of microclimates in
mountainous areas and narrow valleys remains far from perfect. Third, the model in this study has not
yet integrated global and regional climate predictors, such as the Nifio 3.4 index, the Dipole Mode
Index (DMI), or the MJO, which are important for explaining seasonal rainfall variability in
Indonesia. Fourth, the approach used is entirely based on statistical data without explicit linkage to
physical processes within the hydrological system, so the mechanistic interpretation of some error
patterns remains limited.
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The practical implications and directions for further research that emerge from these findings are
quite clear. For operational applications such as early flood warning and water resource planning in
the Bengawan Solo watershed, ensemble decision tree models (XGB, RF) and relatively lightweight
recurrent networks (GRU) are currently the most realistic choices, offering the best trade-off between
accuracy, spatio-temporal stability, and computational complexity. On the other hand, the potential
of deep learning (DL) is not fully exhausted; improvements can be achieved by (i) enriching features
with ENSO, 10D, and MJO indices, (ii) increasing the temporal resolution of training to daily or
decadal scales, (iii) applying more aggressive regularization and early stopping, and (iv) exploring
transfer learning from larger climate domains.

Additionally, developing hybrid approaches that combine statistical/machine learning models
with physical hydrological models can help reduce structural ambiguities and enhance generalization
capabilities, especially under climate change scenarios. Thus, this study not only demonstrates that
machine learning, particularly XGB and RF, still outperforms most advanced deep learning
architectures in limited-data configurations but also provides a concrete roadmap for improving
spatio-temporal rainfall prediction models in tropical regions with complex topography. Furthermore,
a useful future step would be to integrate a self-imputation and self-quality assessment framework to
stabilize the lunar series before training and applying various types of optimizers (Haidu et al., 2025;
Sriwahyuni et al., 2025).

5. CONCLUSION

This study compares nine ML and DL algorithms for predicting rainfall in the Bengawan Solo
River Basin using CHIRPS data from 1981 to 2024. Results show decision tree-based gradient
boosting models, especially XGBoost (XGB), perform best during 2020-2024 (MAE =~ 59 mm;
RMSE = 80 mm; R? = (.73), followed by Random Forest (RF) and Gated Recurrent Unit (GRU), with
minor differences. GRU was the top DL model (R? = 0.72), while CNN, TCN, and Transformer
architectures had larger errors and variability. Findings indicate ensemble decision trees and
lightweight recurrent neural networks are more reliable than complex DL models in large tropical
river basins with spatial heterogeneity and moderate time series length.

Spatially, accuracy is higher in the basin's center and lower in peripheral or mountainous areas,
affected by microclimate, orographic effects, and satellite limitations. Temporally, errors peak during
monsoon transitions (March—April, October—November) and during climate anomalies, challenging
models during ENSO and IOD events. Practically, XGB, RF, and GRU are suitable for operational
rainfall forecasts, aiding water management and flood mitigation in tropical regions. Limitations
include monthly data resolution, satellite biases, and a lack of external climate predictors like ENSO
and IOD indices.

Future research should integrate high-resolution data, include climate indicators, use
regularization and transfer learning to enhance DL, and explore hybrid models. Overall, this study
highlights trade-offs and opportunities in ML and DL for tropical rainfall prediction, serving as a
guide for developing accurate, adaptive hydrometeorological systems in Indonesia and similar areas.
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