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ABSTRACT 

Predicting rainfall in large, heterogeneous watersheds remains among the most important hydrological 

challenges. This research investigates the effectiveness of both ML (Machine Learning) and DL (Deep 

Learning) for predicting spatiotemporal rainfall in the Bengawan Solo watershed, Indonesia. Satellite 

rainfall data from CHIRPS (spatial resolution: 0.05°) were prepared and sampled for the period 1981–

2024. The data set contained 523 grid points. We employed nine ML and DL algorithms: Random 

Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), Multilayer 

Perceptron (MLP), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal 

Convolutional Network (TCN), Convolutional Neural Network (CNN), and Transformer. Models were 

trained on the samples from 1981 to 2019 and tested on 2020–2024. Performance was judged from 

mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), 

and coefficient of determination (R²). XGB showed the best overall performance (MAE ≈59 mm; R² 

≈0.73). GRU became the most competitive DL model at 60 mm (MAE ≈60 mm; R² ≈0.72). Temporal 

model analysis shows that XGB and GRU stay among the top three models with the minimum monthly 

errors. TCN, CNN, and Transformer exhibited higher errors and more monthly variability. XGB and 

GRU have average MAE values of ~59–60 mm and R² values of ~0.71–0.72 across most grids. MAE 

values for TCN, CNN, and Transformer are greater than 76 mm, while R² values are lower. The data 

we obtained indicate that using ensemble decision tree models and recurrent neural networks across 

large tropical areas yields greater stability and more reliable spatiotemporal rainfall predictions than 

more sophisticated DL architectures. 

 

Keywords: Rainfall prediction; Machine learning; Deep learning; CHIRPS; Bengawan Solo; Spatial 

analysis; Temporal analysis. 

 

 

1. INTRODUCTION 

 

Rainfall prediction is essential for effectively planning water resources, managing disasters, and 

managing agricultural areas in the tropics (Hong et al., 2018; Praveen et al., 2020). The Bengawan 

Solo watershed in Indonesia is an area critical to food security, water supply, and flood control 

(Musiyam et al., 2025). The watershed is a large, socio-economically critical watershed where rainfall 

 
1*Faculty of Geography, Muhammadiyah University Surakarta, Indonesia.  

   Corresponding author: jumadi@ums.ac.id (JJ) 
2INTI International University, Malaysia 
3Faculty of Geography, Muhammadiyah University Surakarta, Indonesia; kuswaji.priyono@ums.ac.id (KDP), 

 e100210132@student.ums.ac.id (AHA) 
4Agency for Meteorology, Climatology and Geophysics (BMKG), Indonesia; supari@bmkg.go.id (SS) 
5University of Hassan II Casablanca, Casablanca, Morocco; hamza.aitzamzami-etu@etu.univh2c.ma (HAZ)  
6Charles Darwin University, Australia; Farha.Sattar@cdu.edu.au (FS) 
7National University of Singapore, Singapore; geomn@nus.edu.sg (MH) 
8Universitas Sriwijaya, Ogan Ilir, South Sumatera, Indonesia; hamzah@fkm.unsri.ac.id (HH) 
9School of Geography, University of Leeds, United Kingdom; S.J.Carver@leeds.ac.uk (SC) 

http://dx.doi.org/10.21163/GT_2026.212.05
mailto:jumadi@ums.ac.id
mailto:kuswaji.priyono@ums.ac.id
mailto:e100210132@student.ums.ac.id
mailto:supari@bmkg.go.id
mailto:hamza.aitzamzami-etu@etu.univh2c.ma
mailto:Farha.Sattar@cdu.edu.au
mailto:geomn@nus.edu.sg
mailto:hamzah@fkm.unsri.ac.id
mailto:S.J.Carver@leeds.ac.uk
https://orcid.org/0000-0002-1002-3084
https://orcid.org/0000-0002-8473-257X
https://orcid.org/0000-0002-0442-5183
https://orcid.org/0009-0002-3741-2028
https://orcid.org/0000-0001-7070-8715
https://orcid.org/0000-0002-1504-4706
https://orcid.org/0000-0002-2780-8902
https://orcid.org/0000-0002-4202-8234


 Jumadi JUMADI, Kuswaji Dwi PRIYONO, Ali Hasan ABDULLAH, Supari SUPARI, Hamza AIT … 98 

 

variability directly affects water availability for irrigation and is closely linked to recurrent 

hydrometeorological impacts on agriculture and a large population. The basin also exhibits 

pronounced physical heterogeneity, ranging from flat plains to hilly and volcanic terrain, with diverse 

soils and land uses, producing strong spatial contrasts in hydrological response and making rainfall 

prediction more challenging at scale (Santhyami et al., 2025). Thus, long-term rainfall data and 

rainfall predictors are crucial. Nonetheless, the effects of high climatic variability, topographical 

complexity, and limited field observation data are major obstacles to the long-term accuracy of rainfall 

prediction (Funk et al., 2015; Kundu et al., 2022).  

Data-driven methods have revolutionized hydrometeorological modeling over time. Machine 

Learning (ML) methods such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support 

Vector Regression (SVR), and Multilayer Perceptron (MLP) to examine in depth the associations 

between predictive variables and rainfall predictors (Sachindra et al., 2018; Miao et al., 2021) are 

used more frequently to discover nonlinear relationships between predictors and rainfall. 

Concurrently, deep learning (DL) approaches like Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), Convolutional Neural Network (CNN), Temporal Convolutional Network 

(TCN), and Transformer architectures depict complex spatio-temporal patterns in climate time series 

(Shi et al., 2015; Chattopadhyay et al., 2020; Espeholt et al., 2022).  

Many studies have shown that DL techniques have great potential for accurately modeling 

hydrometeorological phenomena (Aswin & Geetha, 2020; Hernández et al., 2021), including the 

prediction of severe and rare rainfall events (Laptev et al., 2017; Lim & Zohren, 2021). But most of 

that performance depends on the vastness of the data in terms of temporal depth, with a fairly uniform 

spatial distribution. In data-limited regions, DL models are often weak under time-series conditions 

due to overfitting, poor training, and generalization issues (Willard et al., 2021; Das et al., 2022). 

Although ML and DL techniques have made significant progress in predicting rainfall, quite a few 

research gaps still exist. Comparative studies assessing the performance of ML and DL in tropical 

regions, such as the Bengawan Solo River Basin, with complex spatial and even topographical 

features, are limited, especially when using high-resolution satellite data (such as CHIRPS) to inform 

annual rainfall forecasting.  

Furthermore, it is rare for model training to rely on long time series, spanning 40 years or more, 

despite the fact that long time spans are necessary to account for long-term climate dynamics and 

interannual variability that impact prediction accuracy (Gu et al., 2020). Furthermore, spatially and 

temporally differentiated error analysis is underused, even though it is important to identify specific 

locations and time intervals of model inaccuracy to better prepare for the next model (Cioffi et al., 

2023). To fill in the gap, this study conducted a comprehensive evaluation of nine ML and DL models 

using monthly CHIRPS data for 1981-2024, aggregated to annual rainfall at 98 sample points in the 

Bengawan Solo watershed. Models were trained on historical data and tested on 2020–2024 

conditions, with metrics including MAE, RMSE, MAPE, R², spatial errors, and temporal errors. The 

best-performing model was then adopted as the basis for predicting annual rainfall for 2025–2030. In 

conclusion, this study assesses the predictive performance of ML and DL in the Bengawan Solo 

watershed region, using the long-term CHIRPS (1981–2024) and 2025–2030 periods to estimate 

annual rainfall and to determine which method is best suited to tropical regions with scarce data. The 

literature shows that when remote sensing series are discontinuous, statistical interpolation 

approaches can reconstruct long-term trajectories useful for analysis (Haidu et al., 2024). 

 

2. METHOD 

 

2.1. Study Area 

 

The Bengawan Solo River Basin (Fig. 1) is the largest river system on Java Island, covering an 

area of approximately 16,100 km² and serving as the primary source of water for domestic needs and 

agricultural irrigation. Hydrologically, the watershed is divided into three sub-basins: the Upper 

Bengawan Solo, the Madiun River, and the Lower Bengawan Solo.  
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Fig. 1. Study Area and Sample Points.  

 

Its upstream area (approximately 6,000 km²) lies between 110º13'7.16"–110º26'57.10" East 

Longitude and 7º26'33.15"–8º6'13.81" South Latitude, with predominantly flat topography but 

undulating in the northeast–northwest near the mountains; flow supply comes from the Merapi–

Merbabu volcanic complex in the west and Mount Lawu in the east. The contrasting topographic 

variations and land use, as well as the occurrence of seasonal floods and droughts, make the Bengawan 

Solo River Basin a priority location for hydrometeorological studies and water resources management 

planning (Jumadi et al, 2024; Jumadi et al, 2025). 
 

2.2. Research Framework 

 

This research was conducted in several stages, including data collection, preprocessing, annual 

rainfall prediction using ML and DL, model evaluation (using data from 2020-2024), selection of the 

best model, prediction for 2025-2030, data aggregation, interpolation, and spatiotemporal analysis 

(Fig. 2). 

 

2.3. Data and Data Sources 

 

Data aggregation, interpolation, and spatiotemporal analysis were performed in several stages. 

The study took advantage of satellite rainfall data collected from the Climate Hazards Group InfraRed 

Precipitation with Stations (CHIRPS) product, issued by the Climate Hazards Center at the University 

of California, Santa Barbara (Funk et al., 2015). CHIRPS is a global precipitation dataset for rainfall 

estimation with high spatial resolution (~0.05°, or ±5 km) and long time span (1981 to present). This 

is a global dataset of infrared satellite observation data, reanalysis data, and rainfall data from land 

stations. This hybrid allows CHIRPS to generate consistent rainfall estimations, even in parts of the 

world where ground observation networks are weak such as Indonesia (Ceccherini et al., 2015; Gu et 

al., 2020). In hydrology, the comparative evaluation of monthly gap imputation methods has proven 

essential for the stability of analyses (cf. monthly flow study), which supports our focus on the 

continuity of series (Magyari-Sáska et al., 2025). 
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Fig. 2. Research Framework. 

 

The selection of CHIRPS for this study involved three elements. First, its high spatial resolution 

allows for a better representation of rainfall variability in areas with complex topography such as the 

Bengawan Solo River Basin. Second, its time series spanning more than four decades (1981-2024) 

allows a better understanding of long-term trends and interannual climate variability. Third, the 

availability of open-access data that is routinely updated enables replication of models as well as 

future updates, which is the key principle of data openness in scientific research (Huffman et al., 

2020). 
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2.4. Determination of Prediction Points 

 

All pixels from CHIRPS were extracted in order to allow for the model prediction to capture 

spatial variety of rainfall throughout the Bengawan Solo watershed (Fig. 1). The choice of this method 

was motivated by its ability to provide an even distribution of points across the study area, eliminating 

spatial bias when observation points cluster around specific positions (Hijmans et al., 2005). The 

result was 523 points, evenly distributed over the basin. Each point's geographic coordinates were 

recorded, and a monthly rainfall time series spanning 44 years (1981–2024) was used. This technique 

is also helpful for error analysis in spatial contexts and is central to this study. An analysis of accuracy 

disparities, including from edge vs. center of the watershed (or lowlands vs. mountains) can be made 

under equal spreading of points. 

 

2.5. Development and Configuration of Machine Learning and Deep Learning Models 

 

The development of an annual rainfall prediction model in this study involves two main 

approaches, namely Machine Learning (ML) and Deep Learning (DL). The selection of these two 

groups of methods is based on the consideration that ML has advantages in handling medium-sized 

datasets with relatively limited feature space, while DL is designed to extract complex patterns from 

extensive, temporal, or spatial data (Goodfellow et al., 2016; Zhang et al., 2022). The 

hyperparameterization of the model is presented in Table 1. 

 

2.5.1. Machine Learning Model 

Four ML algorithms, such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support 

Vector Regression (SVR), and Multi-Layer Perceptron (MLP), are applied. RF was selected because 

it can accommodate non-linear relationships and reduce the overfitting of medium-sized datasets 

(Breiman, 2001). Some important parameters, such as the number of trees (n_estimators) and the 

maximum tree depth (max_depth), were optimized using grid search. A gradient boosting method 

called XGB was selected for its ease of computation and ability to handle noisy data (Chen & 

Guestrin, 2016).  

The learning_rate, max_depth, and number of estimators were fine-tuned for the validation data 

to minimize the error. SVR was employed for testing the performance of kernel-based approaches, 

which map data to higher-dimensional spaces to model nonlinear relationships (Smola & Schölkopf, 

2004). The radial basis function (RBF) kernel was used, and the parameters C and gamma were 

determined via parameter search. For the ML group, we utilized MLP as a shallow neural network-

based baseline. The MLP architecture had multiple hidden layers, combined with ReLU activation 

functions and a linear output layer for regression. 

 

2.5.2. Deep Learning Model 

Time and space structures in the data are processed over five different DL models: Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal Convolutional Network (TCN), 

Convolutional Neural Network (CNN), and Transformer. To make use of LSTM, this model features 

two sequential LSTM layers with dropout to reduce overfitting. GRU is a simpler yet computationally 

efficient variant of LSTM (Cho et al., 2014).  

The number of hidden units and dropout rate parameters were optimized based on validation 

performance. TCN was proposed as a non-recurrent alternative to time-series modeling with dilated 

causal convolutions, facilitating long-term dependency modeling (Bai et al., 2018). A CNN was 

applied to extract local temporal features from monthly rainfall data, using a 1D convolutional layer, 

pooling, and dense layers. Transformer is applicable to investigate the capability in fitting temporal 

dependencies without sequential restriction induced by the self-attention mechanism (Vaswani et al., 

2017). The design involved a sequence of encoder layers combining multi-head attention and 

normalization. 
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Table 1.  

ML and DL Hyperparameters. 

Model Type Input window Key hyperparameters / architecture 

RF ML 
24 months (24 rainfall 

lags) 

RandomForestRegressor(n_estimators=100, 

random_state=42); other parameters use scikit-learn 

defaults (e.g., max_depth=None, min_samples_split=2, 

min_samples_leaf=1, max_features="sqrt", 

bootstrap=True). 

XGB ML 24 months 

XGBRegressor(n_estimators=100, random_state=42); 

other parameters follow XGBoost defaults (e.g., typical 

defaults such as max_depth=6, learning_rate=0.3, 

subsample=1.0, colsample_bytree=1.0, 

objective="reg:squarederror" depending on library 

version). 

SVR ML 24 months 
SVR() with scikit-learn defaults: kernel="rbf", C=1.0, 

epsilon=0.1, gamma="scale", degree=3. 

MLP ML 24 months 

MLPRegressor(hidden_layer_sizes=(64, 32), 

max_iter=500, random_state=42); other parameters follow 

defaults: activation="relu", solver="adam", 

learning_rate_init=0.001, alpha=0.0001, etc. 

LSTM DL 24 months (24 × 1) 

Input(shape=(24, 1)) → LSTM(64, activation="relu") → 

Dense(1, activation="linear"); compiled with 

optimizer="adam", loss="mse"; trained for epochs=60, 

batch_size=32. 

GRU DL 24 months 

Input(shape=(24, 1)) → GRU(64, activation="relu") → 

Dense(1, activation="relu"); compiled with 

optimizer="adam", loss="mse"; trained for epochs=60, 

batch_size=32. 

TCN DL 24 months 

Input(shape=(24, 1)) → TCN(nb_filters=32, 

kernel_size=3, dilations=[1, 2, 4, 8]) → Dense(1, 

activation="linear"); compiled with optimizer="adam", 

loss="mse"; trained for epochs=60, batch_size=32. 

CNN DL 24 months 

Input(shape=(24, 1)) → Conv1D(64, kernel_size=3, 

activation="relu", padding="causal") → 

BatchNormalization() → Conv1D(32, kernel_size=3, 

activation="relu", padding="causal") → 

BatchNormalization() → GlobalAveragePooling1D() → 

Dense(1, activation="linear"); compiled with 

optimizer="adam", loss="mse"; trained for epochs=60, 

batch_size=32; predictions clipped to non-negative values 

during recursive forecasting. 

Transformer DL 24 months 

Input(shape=(24, 1)) → 

transformer_encoder(head_size=8, num_heads=2, 

ff_dim=32, dropout=0.1) → GlobalAveragePooling1D() 

→ Dropout(0.1) → Dense(1, activation="linear"); 

compiled with optimizer="adam", loss="mse"; trained for 

epochs=60, batch_size=32. 
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2.5.3. Implementation 

All models were developed using Python with scikit-learn, TensorFlow, pandas, numpy, and 

several other libraries. Model training and prediction were performed on Google Colaboratory Pro 

using high-RAM cloud devices to speed up computation (https://tinyurl.com/y23kfsyh). Each model 

generates monthly rainfall predictions at 98 sample points, which are then aggregated into annual 

totals for performance evaluation and spatio-temporal analysis of prediction errors. 

 

2.6. Model Training, Validation, and Evaluation Scheme 

 

The model's training and validation methods were developed specifically to ensure that the 

predicted findings were statistically sound and robust to annual climate variability in the Bengawan 

Solo River Basin. The dataset was split into two time subsets: the training period (1981–2019) and 

the validation period (2020–2024). This separation was done chronologically (time-based split) to 

avoid data leakage, as future data would otherwise be used for model training. This is frequently used 

to make time series predictions, as seasonal patterns and climate trends may evolve (Hyndman & 

Athanasopoulos, 2018). For training purposes, all models were trained on 523 normalized points from 

monthly rainfall data.  

We configured the data in a temporal order (24 months) for deep learning-based models that 

could capture long-term dependencies. The performance of our model is evaluated with four overall 

criteria: Mean Absolute Error (MAE) (Equation 1), Root Mean Squared Error (RMSE) (Equation 2), 

Mean Absolute Percentage Error (MAPE) (Equation 3), and coefficient of determination (R²) 

(Equation 4). Such composite metrics are chosen to provide a complete picture of the model: an 

absolute accuracy rate, the reliability of these measures, and the proportionality of all errors. In 

general, these metrics measure the difference between the predicted value (𝑦̂𝑖) and the observed value 

(𝑦𝑖).  

MAE =
1

𝑛
∑ |𝑦𝑖  − 𝑦̂𝑖|

𝑛

𝑖=1
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The evaluation results were interpreted by applying the average metric values across all sample points 

to identify the model with the best overall performance. The model with the best performance during 

the validation period was selected and used to produce annual rainfall projections for 2025–2030.  

 

2.7. Creation of Spatial Maps of Rainfall Projections with IDW 

 

The final stage of this research methodology is to translate rainfall forecasting results for the year 

into spatial representations, such as maps. This spatial visualization is critical for understanding the 

distribution of rainfall across geographical intervals, which is not available from prediction value 
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tables alone. To accomplish this, the Inverse Distance Weighting (IDW) interpolation technique was 

selected, as it is simple, flexible for handling irregular data, and works well for environmental 

variables with pronounced spatial autocorrelation, such as rainfall (Lu & Wong, 2008; Phoophathong 

et al., 2025).  

The interpolation process was carried out separately for each projection year (2025–2030) and 

for each prediction model. For each projection year, annual rainfall at each sample point was first 

obtained from the monthly predictions. Aggregation is performed by summing the monthly rainfall 

predictions (in millimeters) at each sample point for the period from January to December of each 

year, specifically for the projection years 2025 to 2030. The IDW is implemented in ArcGIS 10.8, 

using the geographic coordinates of 523 sample points and the corresponding yearly prediction values 

as inputs. To address this, we use the WGS 84 projection system; it helps preserve compatibility with 

CHIRPS data while preventing distortion due to distance. The output grid resolution was set to 0.01° 

(~1 km) to achieve sufficient spatial detail without overloading the computation. The IDW map 

outputs were then spatially analyzed to identify areas with significant rainfall increase and decrease 

trends during the projection period. 

 

3. RESULTS  

 

3.1. Model Performance Comparison 

 

A set of nine annual rainfall prediction models was evaluated for their performance for the 2020–

2024 validation period based on four main metrics, namely Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and coefficient of determination 

(R²) (Fig. 3). These results indicate that XGBoost (XGB) performed the best at all metrics. The MAE 

and RMSE of 59 mm and 80 smm, respectively, indicate low absolute and quadratic errors, and the 

model has an R² of 0.73, indicating excellent ability to explain the variability in annual rainfall.  

 
Fig. 3. Measurement error results for all models. 
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Of the two models, Extreme Gradient Boosting (XGB) ranked 2nd, with an MAE of 55.140 mm 

and an R² of 0.767. XGB handled data non-linearity well but performed slightly worse than RF. XGB 

is sensitive to the learning rate and the number of trees, which is likely to cause instability in 

predictions for long-term datasets where year-to-year data exhibits high variation. We have seen that 

the Multi-Layer Perceptron (MLP), with an MAE of 46.762 mm and an R² of 0.817, performed 

relatively well, although lower than RF. The lower strength of MLPs compared to ensemble-based 

models like RF is attributed to the poor ability of feedforward ANNs to capture long-term temporal 

patterns without a direct memory mechanism (Wu et al., 2010). Although performance was surprising, 

with sequence-based models (e.g., LSTM, GRU, TCN, CNN, and Transformer) achieving very high 

MAE (>88 mm, up to 202 mm for LSTM, TCN, CNN, and Transformer), some architectures also 

yielded negative R² values.  

Such excessive overfitting is likely an effect of the time series being too short, even though it 

spans 44 years, for detecting stable annual climate patterns in complex DL architectures with a large 

number of parameters (Lim & Zohren, 2021). This condition aligns with the results of Laptev et al. 

(2017), who note that DL forecasting models for meteorological time series require hundreds of 

thousands of observations or hundreds of years of simulation data to generalize consistently. These 

findings support the idea that ensemble-based machine learning models, such as RF, remain more 

stable in tropical environments with limited data. These results serve not only as a technical 

framework for hydrology researchers and practitioners but also contribute to the literature by showing 

the practical limitations of DL in low-data areas and by pointing to opportunities for future study to 

develop lighter DL architectures and more realistic regularization. 

 

3.2. Spatial Error Analysis 

 

Spatial error analysis was performed to understand the distribution of prediction errors at 523 

sample points in the Bengawan Solo watershed during the 2020–2024 validation period (Fig. 4–7).  

 

 
Fig. 4. Spatial MAE Distribution (mm). (a) RF, (b) XGB, (c) SVR, (d) MLP, I LSTM, (f) GRU, (g) TCN, 

(h) CNN, (i) TRANSFORMER. 
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Fig. 5. Spatial RMSE Distribution (mm). (a) RF, (b) XGB, (c) SVR, (d) MLP, I LSTM, (f) GRU, (g) 

TCN, (h) CNN, (i) TRANSFORMER. 

 
Fig. 6. Spatial MAPE Distribution (%). (a) RF, (b) XGB, (c) SVR, (d) MLP, I LSTM, (f) GRU, (g) TCN, 

(h) CNN, (i) TRANSFORMER. 
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Fig. 7. Spatial R2 Distribution. (a) RF, (b) XGB, (c) SVR, (d) MLP, I LSTM, (f) GRU, (g) TCN, (h) 

CNN, (i) TRANSFORMERs. 

 

This is critical, given that although aggregated metrics (e.g., MAE, RMSE) provide a baseline 

picture of model performance, the distribution of errors at spatial scales often reveals 

underperformance not evident at the aggregate level (Cioffi et al., 2023). 

Values of the MAE for points indicate that the error distribution is not homogeneous. Despite the 

fact that the Random Forest (RF) model generally achieves the best results, it still exhibits localized 

spatial error distribution, especially at key points in the watershed in the east and west. The points are 

usually in the parts of the area that are more diverse in topography, e.g., in the foothills of Mount 

Lawu to the east and hills in the northwest. These topographic differences probably impact the 

precision of CHIRPS satellite rainfall predictions and the precision of model predictions, respectively. 

On the other hand, in the central plains of the watershed, where the topography is similar and near the 

main Bengawan Solo River, there are lower prediction errors.  

This suggests that the model is more adept at learning the relationship between the historical 

rainfall data and prediction patterns in regions free from extreme topographic gradients. Other, e.g., 

those models used, such as XGB and MLP, exhibit error patterns as in the RF, but they generate more 

error intensity in almost all locations. With the SVR model, the error distribution is scattered and not 

so well matched to the topography pattern, which reflects its sensitivity to the high variation of 

training data. Moreover, deep learning-based models, namely LSTM, GRU, TCN, CNN, and 

Transformer, have large average errors and spatial instability. There exist very large errors in points 

in mountain regions and in transition zones between mountains and plains that exceed the watershed 

mean MAE by more than 3 times. This confirms the overfitting assumption in DL, which occurs when 

the model cannot learn spatial variability effectively.  

The data also supports this observation with an increased error gradient on the MAE distribution 

map for IDW interpolation results towards east and west of the watershed boundaries. This fact 

appears to be in line with earlier works (Funk et al., 2015; Gu et al., 2020), which found that satellite-

based rainfall prediction is more prone to vary when the orographic environment and the number of 

rainfall stations in the location are not very high.  
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Fig. 8. Boxplot Comparison of Error Metrics. 

 

This spatial study has a practical dimension, as it implies that, even though RF is technically well-

known for its worldwide performance, it could still be improved by integrating CHIRPS data with 

higher-resolution data or by pre-conditioning the model to mitigate topographical bias. In addition, 

model evaluation can always be conducted to consider the spatial, not overall, aspect, in order to 

detect and target prediction failures in some regions for future study. 

The spatial error comparison boxplot (Fig. 8) reveals the marked disparity between models in 

accounting for the variability in precipitation at 523 grid points in the Bengawan Solo watershed. On 

average, XGB and GRU have the lowest median MAE and RMSE, and their interquartile ranges 

(IQRs) are rather narrow, which implies good and constant (or comparable) performance in most 

locations. RF marginally is behind (median MAE slightly higher; upper tail slightly longer), but it 

also outperforms SVR and MLP by a long margin of difference because both have larger errors and 

wider distributions. On the other hand, convolutional and attention-based deep learning models (TCN, 

CNN, Transformer) seem obviously less robust: median MAE and RMSE are high, interquartile 

ranges are wide, and the large number of extreme outliers suggests spatial instability and no ability to 

follow rainfall trends for some grids. The boxplot pattern only confirms that the decision tree 

ensembles and GRUs are spatially superior to the more complex deep learning architectures used with 

the dataset. 

 

3.3. Temporal Error Analysis 

 

Temporal error analysis was performed to evaluate variation in model performance over time 

during the 2020–2024 validation period (Fig. 9-12). This approach aims to identify specific periods 

during which the model degrades in accuracy, thereby providing deeper insights into seasonal factors 

and extreme climate events that affect predictions (Zhou et al., 2022).  

Results from temporal evaluation show that the XGBoost (XGB) model, which has good overall 

performance, tends to have more prediction errors during transitional months (March–April and 

October–November, for example). 
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Fig. 9. Temporal Metric of MAE. 

 
Fig. 10. Temporal Metric of MAPE. 

 
Fig. 11. Temporal Metric of R2. 

 
Fig. 12. Temporal Metric of RMSE. 
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At these junctures, monsoon variations in predominant wind directions and erratic weather 

patterns also occur in areas of tropical Indonesia such as the Bengawan Solo watershed. Because these 

patterns are not completely periodic, the abrupt changes in rainfall intensity and location can be hard 

to capture in models based on historical data due to the fact that these patterns are highly influenced 

by global climate variability such as El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole 

(IOD) (McBride et al., 2003; Lestari et al., 2021).  

Major mistakes are also found in years characterized by extreme climate anomalies. That is, for 

example, from October to December 2020 (strong La Niña), rainfall was well above normal, leading 

to large discrepancies between predictions and observed rainfall. On the opposite hand, in 2023 (a 

drier year as we have seen in the rain shadow of El Niño), there were errors early in the rainy season 

with the model predicting heavy rainfall, yet the rainfall did not match the average. RF and GRU 

models have temporal trends similar to that of XGB, except they oscillate with error a little further. 

In contrast, convolutional and attention-based deep learning models (TCN, CNN, Transformer) show 

greater, less stable errors over time, because some models have very high sensitivity to monthly 

outliers, and one or two “bad” months can significantly increase the overall error.  

Overall, this pattern confirms that all models really struggle with rainfall prediction during 

transition seasons or extreme climate processes. In terms of temporal and operational challenges, 

these relate primarily to (1) the inability to better capture long-term climate variability, despite 

employing a 44-year time series, and (2) monthly temporal resolution, which fails to fully reflect the 

intra-monthly dynamics affecting rainfall accumulation. 

 

3.3. Prediction Results 

 

Spatial predictions of annual rainfall with different models (RF, XGB, SVR, MLP, LSTM, GRU, 

CNN, TCN, Transformer) exhibit a fairly consistent distribution pattern in the upper Bengawan Solo 

region, but with varying intensities between models (Fig. 13). Overall, the spatial dynamics of 

traditional ML models (RF in particular) display relatively smoother and more stable spatial patterns, 

whereas DL models like LSTM, GRU, and CNN exhibit sharper spatial fluctuations, especially in 

mountainous areas. The spatial distribution indicates that the highest annual rainfall is anticipated to 

occur in areas adjacent to the Merapi, Merbabu, and Lawu mountains. It mirrors the orographic 

conditions in the area, in which moist air rising produces higher orographic rainfall. In contrast, the 

central part of the watershed tends to have lower and more homogeneous rainfall. These are consistent 

with the RF, XGB, and MLP models, and in fact, DL models like CNN or Transformer often result 

in extreme predictions at certain points, which can be attributed to overfitting issues. 

The differences between the two models are apparent in the sharpness of the spatial gradients. 

DL-based models typically can be “sensitive” to local variations, so that predictions are usually quite 

heterogeneous. This might prove their capacity for finding local anomalies, but it also poses 

possibilities of instability in predicting. When compared to this, RF models give smoother 

distributions, which can be practically put to use (like water planning, flood reduction, etc). This 

phenomenon is also in line with the results of Chen et al. (2022) and Zandi et al. (2022): model 

integration must balance the trade-off between generalization and spatial sensitivity.  

In sum, the spatial results of models show that traditional machine learning models such as 

Random Forest (RF), Extreme Gradient Boosting (XGB), and Multi-Layer Perceptron (MLP) are 

effective in keeping spatial rainfall predictions stable and provide consistent and relatively 

homogeneous distributions in nearly every region of the Bengawan Solo watershed.  

On the other hand, in the case of deep learning models, Long Short-Term Memory (LSTM), 

Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and Transformer, the prediction 

variability is higher and is likely to give large values at multiple places, particularly where orographic 

complexity is high. Another interesting discovery was that the largest spatial variations are found in 

mountainous zones. This emphasizes the necessary relevance of topographical parameters and/or 

orographic processes for the calibration process and the construction of spatiotemporal rainfall 

prediction models in tropical regions. 
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Fig. 13. Spatial Prediction Results for Annual Rainfall 2025–2030 for all models. 

 

 

4. DISCUSSIONS 

 

This work demonstrates that the decision tree-based gradient boosting models, with XGBoost 

(XGB), are most trustworthy for predicting spatiotemporal rainfall for the Bengawan Solo River 

Basin. XGB is the most consistent in providing overall accuracy (MAE ≈ 59 mm; RMSE ≈ 80 mm; 

R² ≈ 0.73), followed by RF and GRU for both temporally (month-to-month) and spatially (location-

to-location) data. The supremacy of the XGB-RF relationship agrees with that of CHIRPS satellite  
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rainfall data in tropical regions, where rainfall strongly, but not linearly, correlates with its controlling 

features and is subject to noise and observational bias. In this light, ensemble decision trees are very 

powerful since they can capture nonlinear interaction in a complicated way without strict 

distributional assumptions, and they provide less sensitivity to hyperparameter selection than large-

capacity deep learning models (Breiman, 2001; Hong et al., 2021; Sachindra et al., 2018). Bagging 

and boosting mechanisms help the model to smooth out local uncertainties between trees, leading to 

stable predictions over 523 grids with a vast variation in topography and microclimates. 

Comparison with the literature shows that these findings are consistent with previous studies 

reporting the superiority of ensemble decision tree models for highly variable hydrometeorological 

data. Hong et al. (2021) and Sachindra et al. (2018) demonstrated that RF and gradient boosting 

models tend to outperform other nonlinear methods when data are limited, spatially heterogeneous, 

and contain difficult-to-model noise. In this study, despite the long temporal sample size (44 years), 

the spatial sample size was only 523 grid points within a single watershed, so the sample-to-parameter 

ratio was much more favorable for decision tree models than for very deep deep learning architectures. 

These results reinforce that, for data configurations like this, a “moderate but robust capacity” strategy 

is more effective than “very large capacity but highly dependent on data volume and diversity.”  

On the other hand, deep learning models exhibit more diverse behavior. GRU emerged as the 

most competitive deep learning model, with performance close to XGB (R² ≈ 0.72) and fairly good 

temporal stability. This indicates that lighter recurrent architectures with fewer parameters, such as 

GRUs, are more suitable for moderate-length monthly time series because they require fewer 

parameters to learn and are easier to calibrate. Conversely, LSTM showed performance not far from 

MLP and SVR. At the same time, convolutional and attention-based architectures (TCN, CNN, 

Transformer) tended to have higher MAE and RMSE and lower R², with significant variability in 

errors across months and locations. This pattern aligns with findings by Chattopadhyay et al. (2020), 

Aswin & Geetha (2021), and reviews by Lim & Zohren (2021), which state that advanced deep 

learning, especially CNN and Transformer, only show clear advantages when: (i) the temporal 

resolution is very high (daily or sub-daily), (ii) the sample size is very large, and (iii) additional rich 

spatial/climate information is available. For monthly resolution and limited domains such as a single 

watershed, this large capacity can easily lead to overfitting and instability. 

Spatial analysis of error distribution confirms that XGB and GRU not only outperform on average 

but are also more robust across most of the watershed area. Both models maintain an average MAE 

of 59–60 mm and an R² of 0.71–0.72 across most grids, while RF lags slightly behind with marginally 

worse MAE and R². Conversely, TCN, CNN, and Transformer show much higher spatial MAE (≈76–

85 mm) and lower R² (≈0.38–0.50), with many grids performing near or even below the climatological 

baseline. The spatial error patterns also reveal that areas with steep topographic gradients, such as the 

slopes of Merbabu, Merapi, and Lawu, as well as the upper reaches of the watershed, tend to have 

higher errors. This is consistent with studies by Gu et al. (2020) and Funk et al., which indicate that 

satellite-based rainfall estimates in tropical mountainous regions are often biased due to sensor 

limitations in capturing small-scale convective clouds and complex orographic effects. Therefore, 

some of the errors observed across all models, including XGB and GRU, also reflect the limitations 

of the “ground truth” rainfall representation itself. 

From a temporal perspective, the analysis of monthly MAE and RMSE shows that all models 

exhibit higher errors during the monsoon transition months (March–April and October–November) 

and in years with strong climate anomalies (e.g., La Niña 2020–2022 and El Niño 2023). In these 

conditions, rainfall intensity and distribution change rapidly and often do not follow periodic patterns 

that can be captured by models based on historical time series. Nevertheless, XGB and GRU are 

relatively consistent in maintaining the highest performance rankings across most months, while 

TCN, CNN, and Transformer exhibit sharp, unstable error spikes. This indicates that the capacity to 

model short-term non-linearity alone is not sufficient; models must also be able to generalize to rare 

but impactful climate regime changes. These findings align with McBride et al. (2003) and Lestari et 

al. (2021), which emphasize that rainfall variability in Indonesia is heavily influenced by ENSO and  
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IOD, making purely time-series-based local models potentially struggle when faced with rare extreme 

events. 

Compared to other regions, model performance patterns in the Bengawan Solo River Basin show 

a strong correlation with the hydrometeorological context and data structure. In the North-Western 

Himalayas, dominated by steep mountainous topography with sharp elevation gradients, multivariable 

daily station data, and a time span of 1980–2021, DL models (specifically Bi-LSTM and LSTM) 

provide the lowest RMSE/MAE and outperform ML, while among ML models, ANN and KNN 

outperform RF and SVR, and accuracy is highly sensitive to elevation (Wani et al., 2024). In five 

large UK cities with a temperate maritime climate and hourly rainfall data, Stacked-LSTM and 

Bidirectional-LSTM architectures also reportedly outperform XGBoost and ML ensembles, although 

they still struggle to capture very abrupt rainfall surges (Barrera-Animas et al., 2022).  

Conversely, a study in the Aligarh District of India showed that for daily and monthly rainfall 

with standard meteorological predictors, CatBoost and RF provide strong correlation and outperform 

SVR, confirming the reliability of tree ensembles for more aggregated time scales (Abdullah & Said, 

2025). In African cities with humid tropical to dry Mediterranean climates, DL (especially single 

RNN) performs best for highly non-linear daily rainfall, with relative humidity and antecedent rainfall 

as key predictors (Samson & Aweda, 2025). In this context, the dominance of XGB, RF, and GRU in 

monthly CHIRPS-based Bengawan Solo annual rainfall prediction can be understood as a 

consequence of a combination of: a tropical monsoon climate with a strong monsoon but averaged 

daily pattern, watershed-scale orographic heterogeneity, and limitations of atmospheric predictors, 

thus significantly reducing the advantages of very deep DL architectures compared to other regions 

and time scales. 

In terms of data validity, CHIRPS is supported by a broad body of validation studies across very 

different hydroclimatic settings. At the global scale, a recent synthesis shows that CHIRPS generally 

attains correlations above 0.7 at monthly and seasonal scales and is widely judged suitable for 

hydroclimatic analysis, with reduced skill mainly in very arid and high-mountain regions (Du et al., 

2023).  

Regionally, CHIRPS has been shown to outperform or rival reanalysis and other satellite products 

in complex tropical and subtropical terrains: for example across Ethiopia, where it consistently 

outperforms ERA5 and reproduces the seasonal cycle and interannual variability (Ahmed et al., 2024; 

Geleta & Deressa, 2020), in the tropical Andes and Antioquia where it captures orographic gradients 

and ENSO-related variability (López-Bermeo et al., 2022; Rivera et al., 2018), in the Amazon basin 

where annual totals are reproduced with R² ~0.98 (da Motta Paca et al., 2020), over the Qinghai–Tibet 

Plateau where CHIRPS compares favorably with MSWEP at monthly scales (Liu et al., 2019), and in 

semi-arid and drought-prone regions such as Northeast Brazil and eastern Africa (Paredes-Trejo et 

al., 2017; Dinku et al., 2018). These studies consistently report that CHIRPS performs best for 

monthly–annual aggregates and large-basin applications, while underestimating some local extremes, 

a trade-off that aligns with our use of 0.05° monthly CHIRPS data aggregated to annual rainfall over 

a large tropical watershed. 

Several limitations of this study should be noted to contextualize the results. First, the temporal 

resolution of the input data is limited to monthly aggregation, so intra-monthly dynamics, such as 

daily extreme rainfall intensity or consecutive rainfall events, are not explicitly represented, even 

though these phenomena significantly contribute to monthly accumulation. Second, although 523 grid 

points provide much better spatial coverage than 98 points, the representation of microclimates in 

mountainous areas and narrow valleys remains far from perfect. Third, the model in this study has not 

yet integrated global and regional climate predictors, such as the Niño 3.4 index, the Dipole Mode 

Index (DMI), or the MJO, which are important for explaining seasonal rainfall variability in 

Indonesia. Fourth, the approach used is entirely based on statistical data without explicit linkage to 

physical processes within the hydrological system, so the mechanistic interpretation of some error 

patterns remains limited.  
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The practical implications and directions for further research that emerge from these findings are 

quite clear. For operational applications such as early flood warning and water resource planning in 

the Bengawan Solo watershed, ensemble decision tree models (XGB, RF) and relatively lightweight 

recurrent networks (GRU) are currently the most realistic choices, offering the best trade-off between 

accuracy, spatio-temporal stability, and computational complexity. On the other hand, the potential 

of deep learning (DL) is not fully exhausted; improvements can be achieved by (i) enriching features 

with ENSO, IOD, and MJO indices, (ii) increasing the temporal resolution of training to daily or 

decadal scales, (iii) applying more aggressive regularization and early stopping, and (iv) exploring 

transfer learning from larger climate domains.  

Additionally, developing hybrid approaches that combine statistical/machine learning models 

with physical hydrological models can help reduce structural ambiguities and enhance generalization 

capabilities, especially under climate change scenarios. Thus, this study not only demonstrates that 

machine learning, particularly XGB and RF, still outperforms most advanced deep learning 

architectures in limited-data configurations but also provides a concrete roadmap for improving 

spatio-temporal rainfall prediction models in tropical regions with complex topography. Furthermore, 

a useful future step would be to integrate a self-imputation and self-quality assessment framework to 

stabilize the lunar series before training and applying various types of optimizers (Haidu et al., 2025; 

Sriwahyuni et al., 2025). 

 

 

5. CONCLUSION 

 

This study compares nine ML and DL algorithms for predicting rainfall in the Bengawan Solo 

River Basin using CHIRPS data from 1981 to 2024. Results show decision tree-based gradient 

boosting models, especially XGBoost (XGB), perform best during 2020–2024 (MAE ≈ 59 mm; 

RMSE ≈ 80 mm; R² ≈ 0.73), followed by Random Forest (RF) and Gated Recurrent Unit (GRU), with 

minor differences. GRU was the top DL model (R² ≈ 0.72), while CNN, TCN, and Transformer 

architectures had larger errors and variability. Findings indicate ensemble decision trees and 

lightweight recurrent neural networks are more reliable than complex DL models in large tropical 

river basins with spatial heterogeneity and moderate time series length.  

Spatially, accuracy is higher in the basin's center and lower in peripheral or mountainous areas, 

affected by microclimate, orographic effects, and satellite limitations. Temporally, errors peak during 

monsoon transitions (March–April, October–November) and during climate anomalies, challenging 

models during ENSO and IOD events. Practically, XGB, RF, and GRU are suitable for operational 

rainfall forecasts, aiding water management and flood mitigation in tropical regions. Limitations 

include monthly data resolution, satellite biases, and a lack of external climate predictors like ENSO 

and IOD indices.  

Future research should integrate high-resolution data, include climate indicators, use 

regularization and transfer learning to enhance DL, and explore hybrid models. Overall, this study 

highlights trade-offs and opportunities in ML and DL for tropical rainfall prediction, serving as a 

guide for developing accurate, adaptive hydrometeorological systems in Indonesia and similar areas. 
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