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ABSTRACT 

This study investigates the dynamics of nighttime light (NTL) intensity in the Bangkok Metropolitan 

Region (BMR), Thailand, during the COVID-19 pandemic using Google Earth Engine (GEE). 

Leveraging the cloud-based processing capabilities of GEE, we analyzed Visible Infrared Imaging 

Radiometer Suite (VIIRS) Day/Night Band (DNB) data to assess the spatial and temporal impacts of 

the pandemic on human activity and socioeconomic conditions across different urban zones. The 

Average Light Index (ALI) and Index of Change (ICH) were calculated to quantify and compare 

changes in NTL intensity between Bangkok and its surrounding provinces. Results revealed a general 

decrease in NTL intensity during the initial year of the pandemic (2020), particularly in the central 

business districts of Bangkok, with a mean ICH value of 95.28 indicating a decrease of approximately 

4.72%. However, the surrounding districts exhibited greater resilience, with a mean ICH value of 99.56 

indicating a slight increase in NTL intensity. A partial recovery was observed in the post-pandemic 

period (2021), with Bangkok’s mean ICH value rising to 99.38, but certain districts, especially those 

reliant on tourism or entertainment, continued to exhibit lower NTL intensity compared to pre-

pandemic levels. This study underscores the diverse and spatially varied impacts of the COVID-19 

pandemic on NTL dynamics across the BMR, highlighting the importance of considering the 

heterogeneous nature of urban areas when assessing pandemic-related effects and formulating recovery 

strategies. 
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1. INTRODUCTION 

The COVID-19 pandemic profoundly impacted public health, economies, and societies 

worldwide (World Bank, 2022). Governments implemented strict measures to curb the spread of the 

virus, including lockdowns, travel restrictions, and social distancing protocols. These measures led to 

significant disruptions in various sectors, with lasting consequences for urban areas (Naseer et al., 

2023). 

While the immediate health crisis has subsided, the long-term consequences of the pandemic 

continue to unfold, with significant implications for urban areas (Sharifi & Khavarian-Garmsir, 2020). 

A study by Wolff and Mykhnenko (2023) highlighted the uneven impact of the pandemic on cities, 

with some experiencing more severe economic and social disruption than others. 

Thailand experienced its first wave of COVID-19 in early 2020, prompting a state of emergency 

and stringent measures to control the outbreak (DDC, 2024). Subsequent waves further exacerbated 

the situation, with cumulative cases exceeding one million by late 2021.  
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While the situation has gradually improved through vaccination efforts and government 

interventions, Thailand continues to face challenges in its recovery (Ministry of Foreign Affairs of 

Thailand, 2020; Bank of Thailand, 2020). 

In Europe, the pandemic has reshaped urban landscapes and accelerated existing trends such as 

the rise of remote work and the growth of online businesses. A study published in Cities (Wolff & 

Mykhnenko, 2023) found that the pandemic led to a significant decrease in commuting. Furthermore, 

there was an increase in residential mobility, with people relocating from city centers to suburban 

areas to escape overcrowding and reduce the risk of infection. 

Identifying areas requiring targeted recovery and development efforts is crucial for the nation's 

progress (UNDRR, 2015; Deonarine et al., 2021). This study has important implications for 

understanding the social, economic, and environmental impacts of the COVID-19 pandemic on urban 

areas. To achieve this understanding, geospatial technologies offer powerful tools for analyzing the 

impacts of such events. Cloud-based platforms like GEE are particularly useful for this purpose. NTL 

data is readily available within GEE. It has proven valuable in assessing urban dynamics and spatial 

inequalities. This is particularly true in response to significant events (Li & Zhou, 2017; Gorelick et 

al., 2017; Ma, Huang & Liu. 2022; Itsarawisut, Puckdeevongs & Laosuwan, 2024). The European 

Space Agency (2024) has utilized GEE to monitor the impact of COVID-19 on air quality and urban 

green spaces across Europe. For example, Wang et al. (2024) used NTL data and GEE to analyze how 

COVID-19 impacted urban networks, demonstrating the value of these tools for understanding urban 

resilience and adaptation. This highlights the potential of NTL data and GEE to inform urban recovery 

and sustainable development. 

This study investigates the impacts of the COVID-19 pandemic on human activities and urban 

dynamics in the BMR using NTL data and GEE. The analysis focuses on identifying the social, 

economic, and ecological implications of the pandemic and providing insights for urban recovery and 

sustainable development. For example, the analysis of NTL data can reveal how the pandemic has 

affected human activities and behaviors in different parts of the BMR, such as changes in commuting 

patterns, leisure activities, and social gatherings. This information can be used to understand the social 

consequences of the pandemic and to develop policies to mitigate its negative impacts. Furthermore, 

the findings can inform recovery efforts by identifying areas that experienced the most significant 

declines in NTL intensity, which may indicate areas with the greatest economic distress and require 

targeted support for businesses and employment. From an ecological perspective, the use of GEE for 

NTL analysis promotes sustainable practices by reducing the need for energy-intensive on-site data 

collection and processing, contributing to a lower carbon footprint for research activities. 

NTL data has become a valuable tool for monitoring human activity. This data is observed by 

satellites such as the VIIRS DNB. It can be used to monitor economic activity, urban development, 

and environmental changes (Min et al., 2015; Bagayoko, Kadengye & Runyenje, 2018). Recent 

studies have utilized VIIRS DNB data to investigate the impact of the COVID-19 pandemic on human 

activity by examining changes in NTL intensity. For example, Pavlačka et al. (2023) investigated the 

impact of COVID-19 on NTL intensity in the Czech Republic using VIIRS DNB data. They found 

that light intensity decreased during lockdown periods, consistent with other studies conducted in 

various countries such as India, France, Vietnam and the United States (Deepab & Gupta, 2021; Xu 

et al., 2021; Kovács, 2022). 

This study builds upon our previous exploratory work applying GEE to analyze NTL dynamics 

in Bangkok during the COVID-19 pandemic. This unpublished work investigated the impacts of 

COVID-19 on NTL within Bangkok, revealing spatial and temporal variations in changes in human 

activities. While that work focused solely on the urban core, this study expands the scope to 

encompass the broader BMR, including both the densely urbanized core and the surrounding peri-

urban areas, as illustrated in Fig. 1. This broader perspective allows for an investigation into the 

potentially divergent impacts of the pandemic across varying levels of urbanization, which can further 

support the development of more location-specific recovery policies tailored to the unique 

characteristics of each area. 
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By leveraging the capabilities of GEE, this study analyzes NTL satellite imagery to assess NTL 

changes in the BMR across the pre-pandemic, pandemic, and post-pandemic periods. The analysis 

aims to reveal spatial patterns and variations in pandemic-related impacts on human activity and 

mobility across different zones of the BMR. 
While changes in NTL intensity can provide preliminary insights into potential impacts (Andries 

et al., 2023), this study serves as an initial screening. Further investigation and ground-truthing are 

necessary to definitively link observed changes to the pandemic and to determine the specific nature 

and extent of the impacts (Liu et al., 2024). Nevertheless, the spatial patterns identified through NTL 

analysis can guide further research and targeted interventions for recovery and development (Mitsova 

et al., 2024). 

The findings of this study will provide valuable information for agencies and organizations 

involved in recovery planning and economic and social development (Wang et al., 2024). 

2. STUDY AREA  

This study focuses on the BMR in Thailand, which includes 50 districts in Bangkok and 29 

districts in the surrounding five provinces: Nonthaburi, Pathum Thani, Samut Prakan, Nakhon 

Pathom, and Samut Sakhon. The BMR is Thailand's economic, transportation, and social hub 

(Peungnumsai et al., 2020), with a population of approximately 10 million people residing in its 

7,701.56 sq.km area (LDD, 2019), making it the most populous region in Thailand. The COVID-19 

pandemic and related lockdown measures had a substantial impact on daily life and the economy here. 

The restrictions, such as lockdowns and travel limitations, led to noticeable changes in activity levels 

across both central and outer areas (Sirikeratikul & Nicely, 2020). 

The population density in Bangkok averages 3,503 persons/sq.km, while the surrounding five 

provinces have an average population density of 861 persons/sq.km (BMA, 2023; DPT, 2023). This 

difference in population density reflects the varying levels of urbanization and economic activity 

across the BMR. Approximately 67% of Bangkok's total area consists of urban areas and built-up 

environments, compared to only 30% in the surrounding five provinces (LDD, 2019), highlighting 

the significant difference in urban development and land use patterns between Bangkok and its 

neighboring provinces (Fig. 1). 

The mix of urban and peri-urban environments within the BMR provides a unique opportunity to 

analyze the diverse impacts of the COVID-19 pandemic on NTL dynamics across different land use 

types and socioeconomic conditions. The BMR’s geographical and social characteristics vary 

significantly. Bangkok itself is densely populated with high economic activity, while the surrounding 

provinces consist of residential neighborhoods and industrial zones (Peungnumsai et al., 2020). This 

division allows for a closer examination of changes in NTL intensity across different types of districts, 

shedding light on how the pandemic impacted urban and suburban life in unique ways. 

3. DATA AND METHODS 

3.1. Data Acquisition and Preprocessing 

This study utilizes two primary data sources. The first is a vector layer delineating the 

administrative boundaries of the BMR. This layer encompasses 79 districts, comprising 50 districts 

within Bangkok and 29 districts across the five adjacent provinces: Nonthaburi, Pathum Thani, Samut 

Prakan, Nakhon Pathom, and Samut Sakhon. This vector layer serves as the spatial framework for the 

analysis. 

The second data source is NTL data obtained from the Visible Infrared Imaging Radiometer Suite 

(VIIRS) Day/Night Band (DNB) Composites Version 1 dataset, produced by the Earth Observation 

Group, Payne Institute for Public Policy, Colorado School of Mines (Earth Observation Group, 2020). 

This dataset, accessible through GEE, provides monthly cloud-free average radiance composites, 

capturing light emissions in the 400-900 nm wavelength range. The VIIRS DNB sensor onboard the 

Suomi National Polar-orbiting Partnership (NPP) satellite measures NTL with a spatial resolution of 



100 

 

approximately 460 meters. The DNB data records radiance values in nanowatts per steradian per 

square centimeter, encompassing light emitted from various sources such as streetlights, buildings, 

and vehicles (Elvidge et al., 2009). 

For this analysis, imagery from April of each year (2019, 2020, and 2021) was selected to 

represent the pre-pandemic, pandemic, and post-pandemic conditions, respectively. This selection 

allows for a consistent temporal comparison of NTL patterns across the study period. 

 

 

Fig. 1. Study area, population density, and urban extent. Source: Population density data from BMA (2023) 

and DPT (2023); Urban extent data from LDD (2019). 

 

3.2. Data Processing and Analysis within GEE 

All data processing and analysis were performed within the GEE cloud computing platform, 

which enables efficient handling and analysis of large geospatial datasets (Sunarta & Saifulloh, 2022). 

The Google Earth Engine-based analysis was implemented via a GEE coding script 

(https://code.earthengine.google.com/5b84ba93ea269e258805992d64660dc0).  

https://code.earthengine.google.com/5b84ba93ea269e258805992d64660dc0
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The entire process, detailed in the following sections, consists of 3 main steps: 1) mean-based 

imputation for continuity., 2) calculation of the Average Light Index (ALI)., and 3) calculation of the 

Index of Change (ICH). 

Mean-based imputation for continuity: Although the VIIRS DNB dataset provides monthly 

cloud-free composites, some pixels may still contain null values due to persistent cloud cover or other 

data acquisition issues. To address this, the focal mean () function in GEE was employed to fill null 

pixels with the average value of surrounding pixels within a 2.5-pixel radius, using a square kernel. 

This spatial interpolation technique ensured data continuity and minimized the influence of missing 

values on subsequent analyses. 

Calculation of the ALI: To facilitate district-level analysis, the ALI was computed for each of the 

79 districts within the BMR. This involved utilizing GEE's zonal statistics capabilities to calculate the 

sum of the products of each pixel's DNB value and its area within each district polygon, subsequently 

dividing by the total district area to obtain the ALI. This index represents the average NTL intensity 

within each district. The mathematical expression for ALI calculation (Pavlačka et al., 2023) is as 

follows. 

 

𝐴𝐿𝐼𝑖 =
∑𝐷𝑁𝐵𝑝𝐴𝑝

𝐴𝑖
                                                            (1) 

 

where ALIi is the Average Light Index of i-th district, p is the number of patches (a patch is a grid cell 

or a part of a grid cell intersected by the district border), DNBp is the digital number (radiance value) 

of the p-th patch, Ap is the area of the p-th patch, and Ai is the area of the i-th district. 

 

Calculation of the ICH: To quantify the relative changes in NTL intensity between the pre-

pandemic year (2019) and the pandemic/post-pandemic years (2020 and 2021), the ICH was 

calculated. This involved comparing the ALI of each district in 2020 and 2021 to its ALI in 2019. The 

formula for ICH (Pavlačka et al., 2023) is:  

 

𝐼𝐶𝐻𝑦𝑖 =
100𝐴𝐿𝐼𝑦𝑖

𝐴𝐿𝐼2019𝑖
                                                            (2) 

 

where ICHyi represents the Index of Change for a specific District (i) in a given year (y, either 2020 

or 2021), ALI2019i denotes the ALI for the same District (i) in 2019.  

 

The resulting ICHyi value indicates the percentage change in ALI for that District between the 

specified year and 2019. An ICHyi of 100 signifies no change, a value greater than 100 represents an 

increase (indicated by a '+' symbol), and a value less than 100 indicates a decrease (indicated by a '-' 

symbol) in ALI compared to 2019. 

 

3.3. Separate Calculations for Bangkok and Surrounding Provinces 

To assess the differential impacts of the COVID-19 pandemic on NTL dynamics in Bangkok and 

the surrounding provinces, the ALI and ICH calculations were performed separately for the two areas. 

This involved subsetting the BMR vector layer into two distinct layers: one representing the 50 

districts of Bangkok and the other representing the 29 districts of the surrounding provinces. The 

zonal statistics and ICH calculations were then applied to each subset independently, allowing for a 

direct comparison of NTL changes between the urban core and the peri-urban areas. 
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3.4. Statistical evaluation and Visualization 

To assess the inter-annual variations in NTL intensity, a comparative analysis of DNB values and 

the derived ALI was conducted for each year. This analysis employed basic statistical indicators, 

including minimum, maximum, median, mean, and standard deviation. These indicators were 

calculated separately for Bangkok and the surrounding provinces to characterize the distribution of 

NTL intensity and its changes over time. 

Furthermore, these statistical indicators were utilized to characterize the distribution of the ICH, 

with 2019 serving as the baseline year. Histograms were generated to visualize the density distribution 

of ICH values across all districts within the defined study area, providing insights into the overall 

patterns of change in NTL intensity. 

 

3.5. Typology of Change Trends 

A typology was developed to categorize the year-on-year changes in ALI into four logical 

categories based on increases or decreases relative to 2019 (Table 1). This typology facilitates a more 

nuanced understanding of the temporal dynamics of NTL changes in response to the pandemic. 

 
                                                 Table 1. 

Typology of trend of change. 

Type 2019-2020 2019-2021 

+ + Increase, Increase. 

- + Decrease, Increase. 

- - Decrease, Decrease. 

+ - Increase, Decrease. 

4. RESULTS 

4.1. Descriptive Statistics 

Basic statistical measures (minimum, maximum, median, mean, and standard deviation) were 

computed for both the raw VIIRS DNB values and the derived ALI for each year (2019, 2020, and 

2021). These statistics, generated within the GEE environment, provide a preliminary overview of the 

central tendency and variability of NTL intensity across districts within both Bangkok and the 

surrounding provinces. Specifically, the nighttime light data used in this analysis consisted of gridded 

layers of DNB, generated for April of 2019, 2020, and 2021, as visualized in Fig. 2. 

As shown in Table 2, the distribution of DNB values in Bangkok during the pre-pandemic year 

(2019) exhibited the highest variability compared to 2020 and 2021, as evidenced by the highest 

standard deviation (SD = 18.00). While the mean DNB value was relatively high in 2019, the median 

DNB value was slightly lower in 2019 compared to 2021. In contrast, the surrounding provinces 

showed a different trend, with the highest mean DNB value observed in 2021, although the variability 

remained relatively consistent across the three years. 

For the ALI values in Bangkok, both the mean and median were highest in the pre-pandemic year 

(2019), with a noticeable decrease observed in 2020, followed by a partial recovery in 2021. This 

pattern suggests a reduction in NTL intensity in Bangkok during the COVID-19 pandemic, with a 

subsequent rebound in activity in the post-pandemic period. However, the surrounding provinces did 

not exhibit the same trend. While the mean ALI value slightly decreased in 2020, it increased in 2021, 

exceeding the pre-pandemic level. This observation suggests distinct changes in NTL activity 

between the urban core (Bangkok) to the peri-urban areas (surrounding provinces) during the 

pandemic. 
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Fig. 2. NTL intensity (DNB) in the BMR during April 2019, 2020, and 2021. Source: Authors’ elaboration. 

4.2. Index of Change (ICH) Analysis 

The ICH, calculated using GEE for 2020 and 2021 relative to the 2019 baseline, revealed the 

percentage change in ALI for each district. Histograms (Fig. 3) were generated within GEE to 

visualize the distribution of ICH values across the districts in both Bangkok and the surrounding 

provinces, providing insights into the spatial patterns of change in NTL intensity. 

 
                                                                                                         Table 2. 

                              Statistical characteristics of original DNB and ALI values in Bangkok  

                                 and the surrounding provinces during April 2019, 2020, and 2021. 

 

Region Dataset Min Median Mean Max SD 

Bangkok 

DNB2019 1.13 20.52 23.24 229.08 18.00 

DNB2020 1.16 20.47 22.43 218.44 16.56 

DNB2021 0.83 21.02 23.41 215.11 17.44 

ALI2019 4.76 24.12 26.00 77.95 11.76 

ALI2020 4.55 22.81 24.38 70.06 10.18 

ALI2021 4.75 23.04 25.30 69.96 10.35 

Surrounding 
Provinces 

DNB2019 0.68 4.70 9.02 186.25 10.72 

DNB2020 0.81 4.76 8.90 159.29 10.24 

DNB2021 0.77 5.41 9.66 208.64 11.02 

ALI2019 1.77 8.31 9.95 23.12 6.38 

ALI2020 1.82 7.97 9.85 24.02 6.36 

ALI2021 1.94 8.96 10.54 23.43 6.47 
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In the surrounding provinces, the ICH distributions for both 2019-2020 and 2019-2021 are less 

skewed, with mean values of 99.56 and 108.62, respectively. Notably, the mean ICH value for 2019-

2021 in the surrounding provinces exceeds 100, indicating an overall increase in NTL intensity 

compared to the 2019 baseline. 

The lower mean ICH value in Bangkok in 2019-2020 compared to 2019-2021 underscores an 

overall reduction in NTL intensity during the initial year of the COVID-19 pandemic (2020), followed 

by a partial recovery in 2021. However, the surrounding provinces show a different trend, with a 

slight increase in mean ICH in 2020 and a more pronounced increase in 2021. This difference 

highlights the varying impacts of the pandemic and subsequent recovery on NTL dynamics in the 

urban core versus the peri-urban areas.  

 

 

Fig. 3. Information model of the interaction of subsystem of city economy with the environment.  

Source: Authors’ elaboration. 
 
                                                                                                                                                                    Table 3.  

Statistical characteristics of calculated ICH with the base year 2019. 

Region Dataset Min Median Mean Max SD 

Bangkok ICH 2020 76.82 95.83 95.28 107.84 7.13 

ICH 2021 74.55 100.05 99.38 128.99 10.36 

Surrounding Provinces ICH 2020 91.33 98.99 99.56 119.30 5.37 

ICH 2021 89.11 107.29 108.62 133.48 9.24 

4.3. Temporal and Spatial Trends 

Further analysis of the ICH values and their spatial distribution, facilitated by GEE's visualization 

and mapping tools, highlights areas that experienced significant increases or decreases in NTL during 

the pandemic and post-pandemic periods. These trends will be discussed in relation to the known 

impacts of COVID-19 on the various districts within Bangkok and the surrounding provinces. 
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Fig.4 illustrate the spatial distribution of the ICH. This shows the change in NTL intensity across 

the districts. The ICH values for 2020 and 2021 are compared to the baseline year of 2019. An overall 

comparison between 2020 and 2021 reveals a greater decrease in light intensity in 2020. This is 

particularly true in certain districts within Bangkok. 

 
Fig. 4. Spatial Distribution of NTL Change in the Study Area, Classified by ICH.  

Source: Authors’ elaboration. 
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In 2020, during the peak of the pandemic and associated lockdowns, a majority of districts in 

Bangkok exhibited a decrease in NTL intensity, evident from their ICH values below 100. The most 

pronounced declines were concentrated in the central business districts (e.g., Pathum Wan, Sathon, 

Ratchathewi, and Watthana) and areas with high economic activity, reflecting the impact of 

restrictions on businesses and social gatherings. However, some districts in the outskirts of Bangkok, 

such as Bang Khen, Phra Khanong, Bang Kapi, and Bangkok Yai, showed an increase in NTL 

intensity during this period. 

In 2021, following the easing of restrictions, a partial recovery in NTL intensity was observed in 

many districts in Bangkok, with fewer districts displaying ICH values below 100. Notably, districts 

with a strong industrial presence, such as Bang Khun Thian, Phasi Charoen, and Khlong Sam Wa, 

demonstrated a more pronounced rebound. However, some areas, especially those reliant on tourism 

or entertainment, such as Phra Nakhon and Khlong San, continued to exhibit lower NTL intensity 

compared to the pre-pandemic levels. 

In the surrounding provinces, the spatial patterns of NTL change were more varied. While some 

districts experienced consistent decreases throughout the study period (e.g., Mueang Pathum Thani 

and Nakhon Chai Si), others showed increases in both years (e.g., Kamphaeng Saen and Don Tum). 

Many districts exhibited a decrease in 2020 followed by an increase in 2021, particularly those in 

close proximity to Bangkok.  

4.4. Categorization of Change 

The typology developed based on year-on-year changes in ALI will be presented in Fig. 5, 

showcases the four logical categories and their distribution across the BMR. This categorization, 

derived from the GEE analysis, aid in identifying districts that exhibited similar patterns of change in 

NTL intensity.  

 

 

 

Fig. 5. Categorization of NTL Dynamics in the BMR During the COVID-19 Era.                                                       

Source: Authors’ elaboration. 
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                                                                                                                              Table 4. 

Frequencies and total area of the resulting types. 

Region Pattern Type Frequency Total area (km2) Share of area (%) 

Bangkok 

+ + 12 495.02 31.27 

- + 13 536.15 33.86 

- - 24 524.02 33.10 

+ - 1 28.07 1.77 

Sum 1,583.26 100.00 

Surrounding 
Provinces 

+ + 10 2,316.94 37.87 

- + 14 3,066.00 50.11 

- - 5 735.36 12.02 

+ - 0 0.00 0.00 

Sum 6,118.30 100.00 

 

Fig. 5 and Table 4 illustrate the distribution of NTL change patterns across the BMR between 

2019 and 2021. These patterns reveal how light intensity changed in each district during the pandemic 

and post-pandemic periods. In Bangkok, the most common pattern was a continuous decrease in light 

intensity throughout 2020 and 2021 (- -). This pattern was observed in 24 districts, mainly in the city 

center. Thirteen districts, mostly in the outskirts or with industrial activity, experienced an initial 

decrease in 2020 followed by an increase in 2021 (- +).  Twelve districts, also mainly on the outskirts, 

showed a continuous increase (+ +). Only one district, Saphan Sung, had an increase followed by a 

decrease (+ -). 

In the surrounding provinces, the most common pattern was an initial decrease during the 

pandemic year (2020) followed by a subsequent increase in the post-pandemic year (2021) (- +), 

observed in 14 districts.  This pattern was particularly prevalent in districts bordering Bangkok. The 

next most frequent patterns were a continuous increase in light intensity throughout both 2020 and 

2021 (+ +), found in 10 districts, and a consistent decrease in light intensity throughout both years (- 

-), observed in 5 districts. No districts in the surrounding provinces exhibited an increase followed by 

a decrease (+ -). 

The COVID-19 pandemic had diverse impacts on NTL dynamics across the BMR. These impacts 

varied spatially. Distinct patterns were observed in the urban core and peri-urban areas. 

5. DISCUSSION  

This study reveals substantial spatial and temporal variations in NTL intensity across the BMR 

during the COVID-19 pandemic. The observed decrease in NTL intensity during lockdowns aligns 

with previous studies documenting similar reductions in various urban areas worldwide (Liu et al., 

2024). Kovács (2022) also reported comparable declines in NTL intensity during lockdowns, 

highlighting NTL data's utility in monitoring changes in human activities and urban dynamics in 

response to major disruptions like the pandemic. Furthermore, this supports Pesaresi et al. (2021), 

who emphasized the role of human activity changes, as seen in NTL patterns, on COVID-19 spread 

and socioeconomic impacts. The observed reductions can likely be attributed to restrictions on 

business, social gatherings, and mobility, leading to decreased economic activity and energy 

consumption. 

Similar to our findings, Pavlačka et al. (2023) investigated the impact of COVID-19 on night-

time lights in Czechia using VIIRS DNB data and found that the ALI exhibited a decrease of 18% in 

2020 during the first big peak of the coronavirus pandemic. This decrease in NTL intensity was 

attributed to the substantial impact of restrictions on social and economic life during the pandemic. 

However, our study revealed a more pronounced decrease in NTL intensity during the first lockdown 

in April 2020. This difference may be attributed to the stricter lockdown measures implemented in 
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Thailand during April 2020, which included a nationwide curfew and the closure of most businesses 

and public spaces. Additionally, the first wave of the pandemic in Thailand coincided with the school 

break in April, which may have further contributed to the decrease in NTL intensity. 

The spatial heterogeneity of the impacts, with certain districts experiencing more pronounced 

declines than others, also echoes observations from previous research, highlighting the uneven 

distribution of the pandemic's effects across urban areas (Sharifi & Khavarian-Garmsir, 2020; Da 

Schio et al., 2021; Liu et al., 2024). The central business districts and areas with high economic 

activity within Bangkok were the most affected, as these areas are highly dependent on the smooth 

flow of people and commercial activities. In contrast, residential areas and those in the surrounding 

provinces of the BMR showed greater resilience or even an increase in NTL, likely reflecting shifts 

in work and living patterns. The rise of remote work and the relocation of some businesses and 

residents to the outskirts of Bangkok may have contributed to this trend. 

In contrast to Pavlačka et al. (2023), who analyzed NTL data for the entire month of October to 

avoid seasonal effects, our study focused on a single month (April) to represent pre-pandemic, 

pandemic, and post-pandemic conditions. This difference in temporal analysis approaches may 

account for some of the observed variations in the magnitude and patterns of NTL changes between 

the two studies. 

A partial recovery was observed in the post-pandemic period, but certain districts within 

Bangkok, particularly those reliant on tourism or entertainment, continued to exhibit lower NTL 

intensity. This suggests that the economic recovery from the pandemic has been uneven, with some 

sectors taking longer to recover than others. The tourism and entertainment industries, which were 

severely impacted by travel restrictions and social distancing measures, are still struggling to regain 

their pre-pandemic levels of activity. 

Notably, our study also highlights the distinct differences in NTL dynamics between 2020 and 

2021. In 2020, the first wave of the pandemic led to a significant decline in NTL intensity, reflecting 

the widespread disruption to economic and social activities. However, in 2021, despite the ongoing 

pandemic and the emergence of new variants, NTL intensity showed signs of recovery, albeit with 

spatial variations across different districts. This suggests that there was a degree of adaptation and 

resilience to the pandemic's impacts in 2021, as people and businesses adjusted to the new normal 

and economic activities gradually resumed. 

6. CONCLUSIONS 

This study highlights the potential of GEE for analyzing NTL intensity in urban areas during 

crises. The COVID-19 pandemic is one example. The cloud-based processing capabilities of GEE 

enable rapid analysis of geospatial datasets. This provides valuable insights into spatial and temporal 

variations in human activity (Gorelick et al., 2017; Sunarta & Saifulloh, 2022; Tahiri et al., 2024). 
This study highlights the heterogeneous impacts of the pandemic. These impacts vary across the 

BMR. Distinct patterns are observed in the urban core and peri-urban areas. This shows the 

importance of considering diverse urban areas when assessing pandemic effects and formulating 

recovery strategies. For instance, policymakers and urban planners can use NTL data to identify areas 

that experienced significant declines in nighttime light intensity during the pandemic, which may 

indicate areas requiring targeted recovery efforts. This could involve supporting businesses, creating 

jobs, and investing in infrastructure to revitalize these areas. 

The findings have implications for post-pandemic urban recovery. The diverse impacts across 

the BMR underscore the need for tailored strategies for each area. For instance, the tourism and 

entertainment industries in the urban core may require specific support, while peri-urban areas may 

present different opportunities. NTL data can monitor crisis impacts and inform urban planning and 

disaster management. Integrating NTL data with socioeconomic and demographic datasets can 

enhance the understanding of the pandemic's multifaceted impacts. 

While NTL data provides valuable insights into the spatial and temporal impacts of crises, it is 

important to recognize its inherent limitations. For instance, NTL data is prone to noise, especially in 
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areas with low light intensity, and may lack sufficient resolution to accurately represent rural activities 

or small-scale economic changes. Additionally, the data may not fully capture human activities 

unrelated to artificial lighting, such as daytime economic or social activities. These limitations 

highlight the importance of validating findings through complementary data sources and ground-

truthing efforts. 

Ground-truthing is essential for linking observed changes in NTL intensity to specific 

socioeconomic or demographic contexts. For example, conducting field surveys or integrating NTL 

data with regional economic indicators can help validate the observed patterns and provide deeper 

insights into the underlying mechanisms. As emphasized by Deepab and Gupta (2021) and Liu et al. 

(2024), incorporating socioeconomic datasets with NTL analysis could improve the interpretation of 

changes and uncover local factors driving these variations. 

Future research should explore the integration of NTL data with high-resolution satellite imagery 

and other emerging data sources, such as IoT sensors, to overcome these limitations. Advancing 

analytical techniques, such as machine learning, could further enhance the reliability and applicability 

of NTL-based findings in urban studies. 

Nonetheless, this research contributes to the growing body of literature on the use of NTL data 

for monitoring and assessing the effects of crises and disasters. The application of GEE for efficient 

and scalable NTL analysis, as demonstrated in this study, opens up new possibilities for researchers 

and policymakers to leverage this valuable data source for evidence-based decision-making in urban 

planning, disaster management, and public health. 
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