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ABSTRACT

Food security is a pressing issue in Indonesia, where challenges in land suitability and crop productivity
are exacerbated by rice diseases and pests. This study aims to detect and analyze rice diseases and pests
in southeastern Mount Merapi, Klaten Regency, using UAV technology to support sustainable
agriculture. The research establishes an integrated framework for precision agriculture by combining
a region Land Potency Index (LPI) with UAV-based multispectral monitoring to address these
challenges. The LPI, assessing slope, lithology, soil, water, and hazard exposure, strategically
identified the central zone of Klaten Regency as the area with the highest agricultural potential, thereby
optimizing the focus for subsequent detailed analysis. Within these high-potential zones, UAV-derived
vegetation indices (NDVI and NDCI) served as effective early-warning indicators. The analysis
revealed a clear distinction where healthy rice plants consistently exhibited NDVI > 0.6 and NDCI >
0.5, while significant clusters fell below these thresholds. Crucially, field validation confirmed that
these low-value clusters were predominantly associated with leaf blast disease, demonstrating the
method's efficacy in pinpointing specific physiological stress. The widespread prevalence of blast in
high-potential areas underscores a direct and significant threat to regional yield. Therefore, this study
demonstrates that the integration of LPI for targeting and UAVs for diagnosis provides a scalable, data-
driven workflow. The findings highlight the critical need for management strategies that leverage this
early detection capability to implement timely interventions, such as the use of resistant varieties and
balanced fertilization, thereby enhancing the sustainability and resilience of rice production systems in
Indonesia and similar agro-ecological contexts.
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1. INTRODUCTION

Food security is a pressing global issue that affects developed countries, developing countries,
and even the very poor nations (Fada et al., 2024; Sundram and Brennan, 2024) Similarly, in
Indonesia, with its diverse geography and rapidly growing population, the country faces significant
challenges in ensuring a stable and sustainable food supply. Key factors in addressing these challenges
include land availability and suitability, agricultural commodities and productivity, as well as food
accessibility (Sundram and Brennan, 2024). The proper selection of land for agricultural effectiveness
and productivity is crucial. Although Indonesia's tropical climate offers advantages for agriculture, its
diverse topography requires appropriate agricultural techniques for optimal utilization (Pereponove
et al., 2023; Hariyanto et al., 2025; Atapattu et al., 2025). In addition, the diversity of landforms,
which are the surface manifestations. of morphological units, materials, and geomorphic processes
that form or transform them over time, results in varied land resources (Migon and Jancewicz, 2024;
Jawabreh et al., 2025).
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There are two main factors causing crop losses in all regions, namely “rice diseases and pests”
and “outdated equipment” (Yuan et al., 2024; Junaid and Gokce, 2025). Diseases and pests in rice
agriculture have long been a concern, and they have recently gained more attention due to their
increasing frequency and severity caused by climate change (Karmakar et al., 2022; Oraon et al.,
2024). Rising temperatures lead to changes in the behaviour of pests and pathogens, affecting their
ability to damage rice crops. Various strategies have been previously implemented to protect rice
crops from diseases and pests. Integrated Pest Management (IPM) is the most ideal approach to curb
the rapid increase in rice diseases and pests due to climate change, having shifted toward more
sustainable and environmentally friendly method by reducing reliance of chemical pesticides (Tiwari,
2024; Abdollahzadeh and Sharifzadeh, 2024). However, its adoption in developing countries like
Indonesia is hindered by financial constraints, high initial costs, and the inherent complexity and
labor-intensive nature to IPM strategies compared to traditional methods. Currently, advanced
technology can be used to improve the quality of agricultural yields without human presence,
including disease and pest prevention (Ma et al., 2024). Remote sensing has become a powerful tool
for identifying and monitoring plant diseases and pests to improve agricultural productivity. Many
academics have achieved satisfactory results in mapping disease damage using satellite imagery (Ma
etal., 2024; Dolatabadian et al., 2025). However, Technological solutions often face scalability issues,
for instance, smart farming applications are typically limited to small areas, while satellite imagery
can be constrained by its spatial and temporal resolution, leading to mismatches between field data
and image pixels.

Rapid advances in remote sensing, supported by wider access to multispectral imagery and
improved image processing algorithms, are enabling more complex applications in environmental
monitoring and surveying, including agriculture sector (Fakriyah et al., 2023; Sabir et al., 2024; Wang
etal., 2025; Nguyen et al., 2025). Remote sensing technology and Unmanned Aerial Vehicles (UAVs)
offers innovative solutions in agricultural management.

Remote sensing has capability to extract spatial data rapidly over wider area. Thus, the Land
Potency Index (LPI) can be generated and used for the preliminary identification of ideal agricultural
land. The LPI Integrates six critical physical parameters-slope, lithology, soil type, surface water,
ground water, and hazard exposure to systematically identify and map high potential agricultural
zones. Meanwhile, multispectral drones provide significant advantages for monitoring rice pests and
diseases. Their ability to capture images in various wavelengths beyond the visible spectrum enables
early detection of plant health issues that are invisible to the naked eye. This enhanced detection
capability results in more accurate assessments of pest manifestations and disease symptoms. In
addition, drones can cover large areas quickly and efficiently, providing comprehensive data across
vast rice fields that are difficult to inspect manually. Rapid analysis and timely decision-making can
help control pest and disease outbreaks before they spread widely. The objective of this study is to
identify and analyse rice diseases and pests on the southeastern flank of Mount Merapi, Klaten
Regency, Central Java-a key rice producing region on a fertile alluvial plain where protecting yields
is crucial for maintaining national food security.

2. STUDY AREA

Klaten Regency, located in Central Java, Indonesia, is strategically situated between two major
urban centers—Yogyakarta to the west and Surakarta (Solo) to the east—making it an important
transitional zone for economic, cultural, and transportation linkages in the region. Geographically, it
lies between the volcanic highlands of Mount Merapi in the northwest and the extensive lowlands in
the southeast. Elevation varies considerably, from over 1,000 meters above sea level on the steep
volcanic slopes to less than 100 meters in the flat eastern plains. This elevational gradient produces a
distinct topographic transition from rugged mountainous terrain to gently undulating hills and broad
alluvial plains. Geologically, Klaten is dominated by Quaternary volcanic deposits from Merapi,
including volcanic breccia, tuff, and andesite lava, which contribute to the region’s high soil fertility
(Saputra et al., 2020). The uplands are characterized by Andisols with high porosity and excellent
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water retention, well-suited for horticulture and perennial crops. In the lowlands, Inceptisols and
Alfisols provide favorable conditions for intensive irrigated rice cultivation. The region’s hydrology
is shaped by river systems and irrigation channels descending from the volcanic slopes toward the
plains, ensuring a reliable water supply for agriculture. These diverse physical characteristics,
combined with its strategic location, make Klaten a vital agricultural and socio-economic hub in
Central Java. The overview of the study area is illustrated in figure 1.
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Fig. 1. Overview of Klaten Regency.
3. DATA AND METHODS

3.1. Rice Field Selection

Preliminary analysis was conducted to select the field of rice crop. The specific rice crop field
was selected by using Land Potency Index (LPI). LPI was conducted in entire area of Klaten regency
to identify which land has high LPI and low LPI. High LPI indicate that the land has high potency for
agriculture activity, vice versa, the low LPI indicates that the land has low potency for agricultural
activity due to particular factors. At least 6 parameters were used in this analysis to generate the LPI
in entire Klaten Regency such as slope, lithology, soil type, surface water, ground water, and hazard
condition in this case the volcano and flood hazards). The summary of the data used for extract the
LPI in the study area can be seen in table 1.

Further analysis was conducted by applying the drone multispectral survey to obtain the level of
healthiness of rice plant in study area. The high LPI area was analysed by using NDVI from
multispectral drone. Additionally, physiology observation of rice plant was also conducted to identify
type of disease and pets that might be found in observed paddy field.
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Table 1.
The data used.
No | Data Format Data | Scale Source and year Provided
1 Geospatial Shp (vector) 1:25.000 Indonesia Geospasial Information Agency, 2010
data
2 Topography Shp (vector) 1:25.000 Indonesia Geospasial Information Agency, 2010
data
3 Indonesian Raster 83m Indonesia Geospasial Information Agency, 2022
DEM (Spatial
Resolution)
4 Disaster data | Tabular Regency BPDP Klaten Regency, 2024
at regency Level
level

3.2. Land Potency Index (LPI)

Land potency index (LPI) was used to decide which paddy field will be observed further by
using multispectral drone. LPI was obtained by overlaying 6 parameters such as slope, lithology, soil,
surface water, groundwater, and hazards exposure. The general formula of LPI can be seen as follow:

LPI=(R+L+H)x B €))
where:

LPI -Land Potency Index;

R -Slope;

L -Lithology;

H  -Hydrology (Groundwater and Surface Water Condition)

B -Hazards exposure

The slope was generated from Indonesia Digital Elevation Model of known as DEMNAS.
DEMNAS is an integrated elevation dataset, synthesized from multiple sources including IFSAR (5m
resolution), TERRASAR-X (5m resolution), and ALOS PALSAR (11.25 m resolution). By
amalgamating these diverse data sources, DEMNAS achieves a spatial resolution of 0.27 arc-seconds
or approximately 8.3 m (Susetyo, 2023). The lithology of Klaten Regency was mainly extracted from
the Geological Map of Yogyakarta and Surakarta Scale 1:100,000. The previous research results such
as (Saputra et al., 2020) also used to obtain mode detail information of geology.

Regarding the hydrological aspect, two key factors are considered: surface water potential and
groundwater potential. Surface water potential is assessed based on the abundance of surface water
sources — such as rivers, lakes, and reservoirs — within a given area and the feasibility of irrigation
development. Groundwater potential, conversely, is evaluated based on aquifer productivity, with
data sourced from the groundwater basins of the Klaten region. Areas characterized by a high
abundance of surface water, high feasibility for irrigation, high groundwater productivity, and
extensive aquifer distribution are considered to have high land potential.

From a disaster aspect, volcanic activity, landslides, earthquakes, and floods were considered in
determining the Land Potency Index (LPI) for Klaten Regency, given the historical occurrence of
these four hazards in the region. Volcanic hazards were excluded from the overlay process because
the entire Klaten area exhibits a uniform ground shaking potential, characterized by low to moderate
Peak Ground Acceleration (PGA). Regarding flood susceptibility, areas prone to flooding are
predominantly located in the southern part of the regency, adjacent to the rivers that form the border
between Klaten Regency and Gunungkidul Regency in the Special Region of Yogyakarta.

The results of the Land Potential Index (LPI) assessment using the formula will produce a value
that determines the potential of a particular land area based on the weight of each parameter. The
values obtained through the calculation are classified into several land potential classes, each with
different value ranges. The land potential index classes are divided into five categories as shown in
table 2 below.
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Table 2.
Land Potency Index (LPI) Class.
No Class LPI Class LPI Value
1 1 Very High 32-40
2 II High 24-31.9
3 111 Medium 16-23.9
4 v Low 8-15.9
5 v Very Low 0-7.9

3.3. UAV Data Acquisition and Image Analysis

The multispectral drone mapping was conducted in rice fields with high LPI values to prioritize
monitoring of high-yield potential areas. The Area of Interest (Aol) was selected based on safe flying
zones, accessibility for ground validation, and a uniform late vegetative-early generative crop stage
to ensure spectral variations reflected plant health. The flight mission was planned and executed using
GSPRO software. In GSPRO, a double-grid (nadir) flight pattern was configured with 80% front
overlap and 70% side overlap to ensure comprehensive coverage and robust data for photogrammetric
processing. The mission was flown at an altitude of 80 meters AGL, achieving a ground sampling
distance (GSD) of approximately 4.23 cm/pixel, a resolution sufficient for detecting intra-canopy
stress. Manual pilot control, when necessary, was conducted using DJI Fly software.

Flight parameters such as altitude, overlap, and route must be set using flight planning software
to ensure comprehensive coverage and high resolution. The UAV platform used was a DJI P4
Multispectral RTK, which features an integrated multispectral imaging system. This system is
equipped with an integrated sunlight sensor that records solar irradiance during flight. This system
captures synchronized imagery in five discrete bands: Blue (450 nm + 16 nm FWHM), Green (560
nm + 16 nm FWHM), Red (650 nm + 16 nm FWHM), Red Edge (730 nm = 16 nm FWHM), and
Near-Infrared (840 nm + 26 nm FWHM). All flights were conducted under stable, clear-sky
conditions to minimize variations in illumination

Ground Control Points (GCPs) must be placed throughout the field, with their precise coordinates
recorded using high-precision GPS to improve georeferencing accuracy. A network of five (5) GCPs,
constructed from high-contrast material, were distributed across the AOI's perimeter and center. Their
coordinates were surveyed using a Real-Time Kinematic (RTK) GPS receiver (DRTK2) with a
horizontal accuracy of +£1 cm + 1 ppm and a vertical accuracy of £1.5 cm + 1 ppm. This high-precision
ground truthing is essential to correct for geometric distortions in the model and achieve a absolute
spatial accuracy of under 5 cm RMSE, ensuring that identified stress zones can be reliably relocated
in the field.

Finally, a thorough pre-flight check of the drone must be conducted, including checking battery
levels, propeller conditions, and camera functionality, as well as ensuring all software systems are
working properly and there is sufficient data storage (Saputra et al., 2022). The captured multispectral
imagery was processed using a standard SfM photogrammetry workflow in DJI GS PRO. The
Radiometric calibration was performed to convert the raw digital numbers (DN) to reflectance values
using the sunlight data. The captured multispectral imagery and the concurrent solar irradiance data
from the drone's sunlight sensor were processed in Agisoft Metashape Pro 2.2.2. The 'Sun Sensor
Calibration' tool was activated, which uses the irradiance data to normalize the imagery for variations
in sunlight intensity, generating a calibrated surface reflectance orthomosaic for each band. This
process is a core function of the integrated DJI system for achieving accurate spectral measurements
without a ground reflectance panel. The key computational steps included: (1) Initial Processing for
feature point matching and generation of a sparse point cloud; (2) Point Cloud Densification to create
a 3D model of the terrain and canopy; and (3) Digital Surface Model (DSM) and Orthomosaic
Generation. The final outputs, the 5-band orthomosaic and the DSM, were then exported for spectral
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analysis in a GIS environment, where pixel-based calculations for NDVI and NDCI were performed
using their standard formula. Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Chlorophyll Index (NDCI) was calculated as:

NIR—Red
NDVI = (NIR+Red) 2)
_ Red_Edge—Red
NDCI = (Red_Edge+Red) (3)

Addressing each of these elements carefully will lay the foundation for an effective and accurate
mapping operation. In general, the workflow of this stage of research can be seen in figure 2 below.
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Fig. 2. The multispectral drone mapping and image analysis work flow.

3.3. Field Observation

The field observation was conducted to obtain the ground truth data. The colour stratification
from the preliminary NDVI and NDCI map was used to design the sample. The field survey will be
conducted using a modified version of disease identification through physiological symptoms in rice
plants based on colour stratification. Disease diagnosis through physiological symptoms will be
identified based on the symptoms presented in table 3. At least 50 georeferenced sampling ponts
(N=50) were randomly selected, ensuring a representative spatial distribution across the entire field.
The sampling unit was an individual rice plant at the specified location.

At each sampling point, the designated rice plant was visually assessed for symptoms of Leaf
Blast. The assessment was based on the presence of characteristic lesion as described in Table 3
(Masnilah et al., 2020). A binary scoring system (0/1) was used. Score 1 (Diseased) was assigned if
one or more typical Leaf Blast lesions such as spindle-shaped, with grey centers and brown/necrotic
margins were observed on any leaf of plant. Meanwhile, score 0 was assigned if no Leaf Blast lesions
were observed on any leaf, and the plant exhibited vigorous growth without signs of chlorosis or
necrosis attributable to blast.
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Table 3.

Symptoms and diagnosis of rice plants affected by viruses and pests.

No  Disease Symptoms Pathogen Diagnosis
1 Leaf Blight Leaves become gray or grayish. Xanthomonas
(Masnilah et Disease progression causes the campestris pv. oryzae
al., 2020) leaves to dry and curl along the
midrib
2 Leaf  Blast A sharp spot appears at the tip of Magnaporthe oryzae
(Masnilah et the leaf, with brown edges and a
al., 2020) grayish or white center. The spot
continues to develop, surrounded
by a pale yellow area.".
3 Leaf  Spot Dark brown spots appear on the Fusarium sp.
(Rahmawati  leaves, with lighter brown edges.
et al., 2017) The rice grains turn yellow, and
some of them become black.
4 Sheath Blight The rice plant sheath becomes Rhizoctonia sp.
(Rahmawati  rotten with elongated lesions,
et al., 2017) yellow to light brown in color, and
the base of the sheath turns
greenish
5 Narrow Numerous small brown spots Cercospora oryzae
Brown Leaf appear on a single leaf, with dark
Spot brown centers and lighter brown
(Rahmawati  edges.
et al., 2017)
6 Grain  Rot The rice grains turn dark brown, Burkholderia glumae
(Widarti et become soft and hollow, while the
al., 2020) edges of the leaves turn reddish,
surrounded by a yellowish rot-like
color
4. RESULTS

4.1. The Land Potential Index (LPI)

The Land Potential Index (LPI) is one of the analytical tools widely used in agriculture to assess
land potential. Naturally, land with a high LPI (LPI > 24) has great potential if optimized for
agricultural activities. Conversely, land with a very low LPI (0-7.9) has limited potential for
agricultural use due to several limiting factors. In general, the Land Potential Index (LPI) is composed
of several parameters, including slope, lithology, soil type, hydrology, and hazards condition.
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Gently sloping (0-5%) receives the highest score in the LPI assessment, as do alluvium-
colluvium lithology, brown alluvial and Mediterranean soils, abundant surface water, highly
productive groundwater, and areas free from natural hazards. The following presents the assessment
results of each parameter in relation to land potential index.

Klaten Regency is predominantly characterized by an LPI slope score of 5, corresponding to
slope class I with a gradient of 0—5% (flat to gently sloping). These flat-to-gently sloping areas are
located in the central part of Klaten Regency, with geomorphology ranging from the volcanic foot
plains of Mount Merapi to intensive alluvial plains. Steep to very steep slopes (slope > 45%) are found
in the northern part of Klaten Regency, which is the cone of Mount Merapi. This area has an LPI
slope score of 1. Moderately steep slopes are located in the northern and central-southern parts of
Klaten Regency, namely on the upper slopes of Mount Merapi (north) and the Bayat sub-district area
in the south.
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Based on lithological aspects, Klaten Regency is mostly composed of volcanic rocks associated
with Mount Merapi in the north. Additionally, there is a complex formation of rocks in Bayat Sub-
district consisting of claystone sediments and metamorphic rocks. Alluvium and colluvium deposits
are found along the narrow plains in the southern part of Klaten Regency, bordering the Baturagung
Hills. The lithology or surface geology score classification of Klaten Regency can be seen in figure
3.

In the LPI (Land Potential Index) assessment, the soil aspect being evaluated is its texture, which
refers to the ratio of sand, silt, and clay. Fine soil textures indicate that the soil is a result of
denudational processes that have been accumulated and deposited. These denudational materials
typically produce fine-textured deposits with high clay content. However, soils with high clay content
are generally less favourable for agriculture. Similarly, soils with overly coarse textures are also less
suitable for farming, as sandy soils have large pores and are unable to retain groundwater effectively.
The LPI soil parameter scores for Klaten Regency can be seen in the following figure. Based on the
LPI soil type scores, the highest scoring soil texture (score 5) is found in brown alluvial and
Mediterranean soils, which have medium soil textures. These soil types are distributed in the central
part of Klaten Regency and parts of the southern region.
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Fig. 4. LPI of Klaten Regency.



70

In relation to the hydrological aspect, two elements are considered: surface water potential and
groundwater potential. Surface water potential is assessed based on the availability of surface water
sources (rivers, lakes, and reservoirs) and the feasibility of developing irrigation. Groundwater
potential is assessed based on groundwater productivity derived from the groundwater basin in the
Klaten area. Characteristics that support high land potential include areas with abundant surface water
resources, strong irrigation potential, and high groundwater productivity with wide distribution. The
results of the hydrological assessment for LPI can be seen in figure 3. In terms of disaster aspects,
volcanic eruptions, landslides, earthquakes, and floods are considered in determining the Land
Potential Index (LPI) in Klaten Regency, as all four types of disasters have occurred in the area.
Volcanic disasters were excluded during the overlay process because all areas of Klaten have similar
ground acceleration (PGA) values, ranging from low to moderate. The disaster scores can be seen in
figure 3. Areas prone to volcanic hazards are located in the northern part of Klaten Regency. These
areas fall within Volcanic Hazard Zones 1 and 2. Meanwhile, the southern part of the region is prone
to landslides. The central part of Klaten Regency, shown in green, is considered free from both
volcanic and landslide hazards. Regarding flood hazards, flood-prone areas are located in the southern
region, particularly around rivers that form the boundary between Klaten Regency and Gunungkidul
Regency, in the Special Region of Yogyakarta Province.

Based on the overlay results using the formula described in Equation 1, the resulting Land
Potential Index can be seen in figure 4. Based on the LPI Results, the drone mapping was conducted
in the area which has LPI value very high in eastern part of Klaten Regency.

4.2. Multispectral drone results (NDVI and NDCI)

Multispectral drone mapping was conducted over three paddy field blocks selected specifically
for their very high LPI classification, uniform late vegetative growth stage, and operational feasibility
(safe flying zones, accessibility). This strategic selection ensured that spectral variations were
primarily linked to plant health rather than underlying land constraints or phenological differences.
The resulting NDVI and NDCI maps revealed distinct health patterns, with healthy rice exhibiting
values >0.6 and >0.5, respectively, while lower values indicated stress, corroborated by field
observations of leaf blast disease.

At least three blocks of paddy field were mapped by using multispectral drone and observed
further in the field. Those three blocks (Fig. 6, Fig. 7 and Fig. 8) are belonged to very high LPI and
cultivated as rice field. Based on the multispectral sensor, the drone mapping produce RGB
orthophoto, Normalised Difference Vegetation Index (NDVI) and Normalised Difference Chlorophyl
Index (NDCI). The Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing
indicator to assess vegetation health, including rice crops. In rice fields, high NDVI values (typically
> (.6) indicate dense, healthy, and photosynthetically active crops, while lower NDVI values suggest
stress, disease, pest infestation, or poor growth due to insufficient nutrients or water (Liu et al., 2024;
Safitri et al., 2024; Munandar et al., 2025)

The Normalized Difference Chlorophyll Index (NDCI) is a vegetation index specifically
designed to estimate chlorophyll content, especially in aquatic or semi-aquatic vegetation like rice in
paddy fields. This index is particularly sensitive to chlorophyll-a concentration, making it useful in
monitoring crop vigour, nutrient status, and early signs of physiological stress. In rice crop health
analysis, NDCI helps identify variations in chlorophyll levels that may result from nutrient
deficiencies, diseases, or other stressors before these issues become visible. Compared to NDVI,
NDCI can offer more nuanced insights into plant physiological conditions, especially in high-biomass
or water-saturated environments (Li et al., 2024; Chen et al., 2024).

Based on the NDVI and NDCI of the observed paddy field. The NDVI of three paddy field
ranging from 0-0.95.5. The lower the NDVT refers to the denser of rice crops while the lower value
refers to the less dense of rice field. Several factor can affect the results of NDVI and such as, the
different of plant, different rice crops ages, and land use change. In the observed rice field, low NDVI
values were found due to those three factors. West Klaten famous by the extensive fertile agriculture
area. Some of farmers also plant horticultural crops such vegetable, fruit, and ornament plants. Some
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of theme use plastic mulch, which is widely used in horticulture to cover the soil surface for various
benefits like moisture retention, weed suppression, temperature regulation, and improved crop
quality. This area will likely result in relatively low NDVT values.

Different crop ages significantly influence NDVI values due to changes in plant structure, leaf
area, and chlorophyll content throughout the growth cycle. In the early stages, crops are small with
limited green biomass, resulting in low NDVI values. As the crops mature, the canopy becomes denser
and chlorophyll levels increase, leading to higher NDVI values that reflect vigorous photosynthetic
activity. However, during the senescence or harvesting phase, NDVI values decline again as leaves
yellow, biomass reduces, and photosynthesis slows. Therefore, NDVI serves as a useful indicator to
distinguish crop development stages and assess crop health over time.

There were two types of observed rice plant growth stages, vegetative ages (less than 45 days)
and reproduction ages (between 45-70 days) (Fig. 5). Field observation and sampling was
strategically restricted to a specific window of the crop cycle: from the late vegetative stage to
the early generative stage in order to minimize the confounding effect of plant phenology on spectral
indices. This ensured that the observed variations in NDVI and NDCI were more likely attributable
to health status rather than the natural spectral differences between very young or senescing plants.

Observed rice Plants

Before planting 0(plant) L 45-55 H 115-120
Days after planting Days after planting
L ;‘ Reproduction Phase ~  Maturation Phase -
2 " (30days) 33-35da
Vegetative Phase -« § L) >

Generative Phase

(55 days) (60-65 days)

Fig. 5. Two types of rice plant phase observed in the field.

Horticultural
“Plant with
-~ Plastic-mulch

[

‘| Magnaporthe grisea
J| NDVI: 0.567-0.630
NDCI: 0.386-0,579
Effect: Yield
reduction

Fig. 6. The Multispectral drone results in Block 1.
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Similar to NDVI, NDCI results can indicate the healthiness of rice plants. Low NDCI values, on
the other hand, often point to stressed or aging crops, potentially caused by nutrient deficiencies, water
stress, disease, or natural senescence. These areas may correspond with sections of the field showing
poor growth or yellowing leaves. It is also possible that non-vegetated areas (e.g., bare soil, plastic
mulch, or recently harvested plots) contribute to low NDCI readings. Therefore, analysing spatial
patterns of NDCI across the field allows researchers to identify zones requiring further investigation
or intervention, aiding in precision agriculture and crop health monitoring.

5. DISCUSSIONS

The results of this research demonstrate a clear distinction in vegetation index values between
healthy and potentially diseased rice crops. Healthy rice plants generally recorded NDVI values above
0.6 and NDCI values above 0.5, reflecting vigorous growth, high chlorophyll concentration, and
optimal physiological function. In contrast, certain spatial clusters exhibited NDVI values below 0.6
and NDCI values below 0.5, indicative of reduced chlorophyll content and possible physiological
stress. Such reductions are commonly associated with early stages of disease, nutrient deficiency, or
water stress. However, variations in NDVI may also be influenced by differences in rice growth stages
across the study area. Younger rice plants in the early vegetative phase typically exhibit lower NDVI
values due to incomplete canopy cover and less developed leaf area, while mature plants in the
reproductive or grain-filling phases tend to reach higher NDVI values as chlorophyll concentration
and biomass peak. Conversely, NDVI naturally declines in the late maturation stage as senescence
begins and chlorophyll content decreases. Therefore, careful interpretation of NDVI results requires
considering the crop calendar and planting synchrony to distinguish between stress-induced
reductions and normal phenological variations.

A binary logistic regression was conducted to predict Leaf Blast (0/1) based on NDVI and NDCI.
The model was trained on 50 observations. The model achieved an accuracy of 94.0% and an AUC
of 0.976. McFadden's pseudo-R? was 0.676, indicating a strong relationship between the predictor

and outcome (Table 4). The regression equation is provided as follow:

Logit (p) = 18.7398 — 5.4808 x NDVI — 26.0514 x NDCI @)

where:
i = P
logit (p) = In (1_p) (5)
P is the probability of Leaf Blast = 1
Table 4.
Statistical model summary.

Statistic Value
Pseudo R? 0.6763
Log Likelihood -10.58
AIC 27.15
BIC 32.89

The coefficient for NDVI (-5.4808) was not statistically significant (p = 0.245), suggesting that
there is not enough evidence to conclude that NDVI is associated with Leaf Blast (Table 5). The
coefficient for NDCI (-26.0514) was statistically significant (p = 0.008), indicating that for each one-
unit increase in NDCI, the odds of Leaf Blast = 1 decrease by a factor of 0.000 (odds ratio). This
means the probability of Leaf Blast = 1 decreases as NDCI increases. The intercept (18.7398) was
statistically significant (p = 0.003). It represents the log odds when all predictors are 0, which
corresponds to a probability of 1.000 for Leaf Blast = 1.
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Table S.
Regression Coefficient.
Variable Coefficient Std Error z-value  p-value  Odds Ratio
(Intercept) 18.7398 6.3646 2.9444 0.0032 137598386.2298
NDVI -5.4808 4.7163 -1.1621  0.2452 0.0042
NDCI -26.0514 9.7987 -2.6587  0.0078 0.0000
At the standard threshold of 0.5, the model correctly classified 94% of cases (Table 6).
Table 6.
Classification Results.
Metric Value
Accuracy 94.00%
Sensitivity (True Positive Rate) 88.89%
Specificity (True Negative Rate) 96.88%
AUC (Area Under ROC Curve) 0.9757

The area under ROC curve (AUC) of 0.976 suggests excellent discriminative ability (Fig. 9).
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Meanwhile the probability curve of each independent variable can be seen in figure 10. For multiple
predictors, the probability depends on the combination of all predictor value.
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Fig. 10. (Left) Probability curve of NDCI; (Right) NDVI.
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Field observations confirmed that leaf blast disease was prevalent across all paddy blocks, with
visual symptoms such as elongated spindle-shaped lesions, chlorosis, and necrosis aligning closely
with areas of low NDVI and NDCI values. The disease’s widespread distribution suggests conducive
environmental conditions—high humidity, warm temperatures, and frequent rainfall—which are
characteristic of the study area during the growing season. In severe outbreaks, leaf blast can cause
up to 50% yield reduction, primarily by reducing leaf area available for photosynthesis, shortening
the tillering phase, and impairing panicle development (Asibi et al., 2019; Conde et al., 2025; Khadka
et al., 2025; Younas et al., 2024). These physiological disruptions result in fewer spikelet’s, lighter
grains, and ultimately lower harvest weight. The spatial pattern analysis further supports the capability
of NDVI and NDCI as effective early warning indicators. Both indices are sensitive to changes in leaf
pigment concentration and canopy structure, allowing detection of sub-visual symptoms before they
become apparent to the naked eye. This early detection is critical because timely intervention—within
days rather than weeks—can significantly reduce the spread and severity of the disease.

The study’s approach, which integrates UAV-based multispectral with targeted field validation,
aligns with growing trend in precision agriculture yet offer specific advantages. Unlike satellite-based
studies which can be constrained by cloud cover and fixed revisit schedules (Inoue, 2020; Phang et
al., 2023), UAVs Provide on-demand, high-resolution data crucial for capturing the fine-scale
heterogeneity of smallholder farms. Our findings are consistent with Mandal et al. (2022) who also
reported strong correlations between NDVI dan blast incidence. However, our work specifically
highlights the NDCI’s sensitivity to the physiological stress caused by blast, potentially offering a
more direct measure of photosynthetic apparatus health that the structural focus of NDVI. A key
limitation, however, is the operational scope. While highly effective for village or sub-district level
monitoring, scaling this method to a provincial or national level would be logistically and
computationally challenging with UAV technology. A promising hybrid solution for larger-scale
monitoring would be to use satellite imagery for broad surveillance, deploying UAVs for high-
resolution follow-up in areas flagged as anomalous

The identification of zones with low NDCI values should trigger a precise and integrated
management response. Specific treatments for these areas must be informed by on-ground diagnosis
but primarily include: (1) the immediate application of systemic fungicides effective
against Magnaporthe oryzae (e.g., containing tricyclazole or azoxystrobin) to curb fungal
growth [Cite a fungicide efficacy study]; (2) a review of nitrogen fertilization practices, as excess
nitrogen exacerbates blast susceptibility, suggesting a shift to split or controlled-release
applications [Cite a study on N and blast]; and (3) ensuring proper water management to avoid
prolonged leaf wetness, potentially by implementing alternate wetting and drying irrigation. To
mitigate the risks posed by leaf blast disease in the long term, a broader integrated management
approach is essential. The use of resistant rice varieties should be prioritized to reduce vulnerability
to Magnaporthe oryzae infection. Proper planting spacing is critical to improve air circulation within
the canopy, thereby lowering humidity levels that favor disease development. Timely and targeted
fungicide applications, guided by the early detection protocol established here, can suppress pathogen
spread while minimizing excessive chemical use. Effective field drainage systems should be
maintained to prevent prolonged leaf wetness, which supports fungal proliferation. Additionally,
balanced fertilization based on soil nutrient assessments is necessary. By combining these preventive
measures with regular UAV or satellite-based monitoring and on-ground validation, farmers can
implement a precision agriculture strategy that minimizes yield losses and sustains long-term
productivity (Zhao et al., 2024).

6. CONCLUSIONS

This study established an integrated framework for agricultural assessment in Klaten Regency
by combining a regional Land Potency Index (LPI) with field-scale UAV monitoring. The LPI, which
synthesizes biophysical parameters, confirmed the central zone as highly suitable for agriculture due
to its flat topography and abundant water resources, while the northern and southern regions were



Aditya SAPUTRA, Danardono DANARDONO, Afif Ari WIBOWO, Christopher GOMEZ, Dedi ... 77

constrained by steep slopes and natural hazards. Within these high-potential areas, UAV-based
analysis revealed that healthy rice plants exhibit NDVI > 0.6 and NDCI > 0.5, whereas lower values
correlated strongly with field-verified leaf blast disease, a major threat to yields. While effective for
local monitoring, the UAV-based approach faces scalability limitations. Future efforts should
therefore focus on developing a hybrid system using satellites for broad surveillance and UAVs for
targeted diagnosis. Feature work will also aim to scale this approach by including a wider range of
LPI classes and phenological stages to build a more comprehensive and robust model. Ultimately,
translating these findings into practical tools for farmers will be crucial to enhance sustainable crop
management and food security beyond the study area.
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