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ABSTRACT: 

The eastern part of Lombok Island is a highly dynamic environment with many physical processes as 

well as very complex landuse. In addition to the anthropogenic origin, sedimentation in this area also 

occurs due to natural origins, such as volcanic processes. Due to hydrological processes since the 1257 

CE eruption of Samalas volcano, almost half of the materials were transported and deposited to the 

coastal area. These deposits can affect the state of the aquatic environment, so they, directly and 

indirectly, affect the coral reef conditions. However, the spatial information of coral reefs in this area 

is rarely known. Therefore, the spatial distributions of coral reefs in this area should be investigated to 

distinguish and determine the factors that regulate its patterns. The multidisciplinary approach, 

including geomorphological survey, remote sensing and geographic information system (GIS), as well 

as geostatistical analysis, has been used to gain a deep understanding of the spatial distribution and 

geomorphic features of coral reefs in the eastern part of Lombok. Our results show that coral reefs on 

the eastern part of Lombok are mostly fringing reefs and developed on shallow continental shelves in 

depth between 0-20 m and located close to the main island. In addition, coast typology in the eastern 

part of Lombok divided into river deposition coast and wave erosion coast. Finally, the absence of 

coral reefs in some areas in the eastern part of Lombok can be caused by sedimentation and pollution 

from the river as well as the extraction of remnant coral reefs. 
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1. INTRODUCTION 

The existence of primary ecosystems in the coastal area, i.e., coral reefs, mangroves, and 

seagrass (Guannel et al. 2016; Mutaqin et al., 2020; Marfai et al., 2020) may affect the coastal 

landscape dynamics. Coral reef as the first barrier can reduce the energy of waves that strike the shore 

(Ferrario et al., 2014; Costa et al., 2016; Hongo et al., 2018; Harris et al., 2018). Coral reef as coastal 

protection may also minimize coastal erosion (Silva et al., 2016; Reguero et al., 2018) and 

significantly reduce the risk from coastal hazards for about 200 million people in the world (Ferrario 

et al., 2014). Coral typically live in tropical and subtropical areas with favorable oceanographic 

conditions, such as water temperatures between 18-29 ⁰C, salinity between 32-42‰, as well as clear 

water where the intense sunlight still can penetrate it (Davidson-Arnot, 2010). Disturbances in those 

advantageous conditions and environment undoubtedly can affect the existence of coral's life. 

One of these disturbances is from volcanic origins. Volcanic materials may reach the sea 

following to the eruption, either directly and indirectly through the river, and it can result in 

disturbances in the ocean environment (Maniwavie et al., 2001; Vroom and Zgliczynski, 2011; 

Mutaqin et al., 2019a; Mutaqin et al., 2019b; Mutaqin and Lavigne, 2019). Disturbances in the ocean 

due to volcanic ash, pumice rafts, as well as Pyroclastic Density Current (PDC) deposits, may affect 

the coral reefs, e.g., coral bleaching which triggers mortality of corals (Maniwavie et al., 2001; Schils, 

2012). In addition to the mortality of corals, there are other negative impacts of lahars, lava flows, 

and volcanic ash that deposited on coral reefs: 1) sunlight penetration has decreased that affect the 
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coral's photosynthesis, changes in the chemical elements in the ocean (Reuter and Piller, 2011), and 

2) nutrient enrichments triggering transformations in the benthic structure (Tomascik et al., 1996; 

Vroom and Zgliczynski, 2011; Schils, 2012). 

 As the most powerful case in the recent eruptive history of Lombok (Lavigne et al., 2013; Vidal 

et al., 2015; Mutaqin et al., 2019a), volcanic materials that were expelled by the Samalas volcano in 

1257 CE covered the entire of Lombok Island, and until now it still remains and exploited by the local 

people through the extraction (Fig. 1). The exploitation of materials from the Samalas eruption in 

Lombok started intensively since the early 1980s. The pumices (Fig. 1a) are exported mainly to Asia 

(China 59.4%, South Korea 20.1%, Vietnam 8.7%, and Thailand 3.2%) as a building material in the 

manufacture of concrete and as an abrasive material (Statistics Indonesia, 2017). The extraction, 

which is widespread all over Lombok Island (Fig. 1b), has accelerated the natural landscape 

evolution. As a result, their exploitation allows the extension of cultivated areas from under-exploited 

land to large rice fields (Fig. 1c) as well as causes the sediment in the rivers, which then flows into 

the sea and leads to sedimentation. 
 

 
Fig. 1. Location of volcanic materials extraction in Lombok Island: a) pumice from the extraction, b) pumice 

quarry, and c) rice-fields area as a "benefit" from the exploitation. 
 

Based on Fig. 1, we can identify that the pumices extractions are mostly found in the eastern part 

of Lombok and may disturb the ocean conditions. However, the spatial configuration of coral reefs in 

this area is largely unexplored. Coral reefs monitoring and research mostly located in the western part 

of Lombok and limited to their ecosystem services (Pradjoko et al., 2015; Kurniawan et al., 2016; 

Chen et al., 2019). The novelty of this research is related to the spatial distributions of coral reefs in 
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the eastern part of Lombok in relation to landscape dynamics, especially from volcanic origins, which 

should be investigated to distinguish and determine the factors that regulate its patterns.  

This research aims at the investigation of spatial distributions of coral reefs in the eastern part of 

Lombok as well as its correlation with the volcanic activities on Lombok Island. In the present study, 

we, therefore, also compared the spatial distribution of coral reefs and bathymetric information as 

well as coast typologies on the eastern part of Lombok.  

2. METHODS 

The multidisciplinary approach between geomorphological surveys, remote sensing and 

geographic information system (GIS) techniques, as well as geostatistical analysis, were used to 

acquire comprehensive information on the subject of spatial distribution and geomorphic 

characteristics of coral reefs on the eastern part of Lombok Island. There are five data as an input to 

further analyze, both in the field and in the laboratory, i.e., coral reefs database; the 1998 Indonesian 

topographic map with a scale of 1:25,000; the 2014 Indonesian bathymetric map with a scale of 

1:200,000; satellite imagery of SPOT 6 and 7; and Indonesian Digital Elevation Model with a spatial 

resolution of 0.27-arcsecond (Fig. 2). This study collected three kinds of data: (1) spatial distribution 

of coral reefs, (2) digital elevation model (DEM), and (3) coast typology. 
 

 
Fig. 2. Research methodology on the spatial analysis and geomorphic characteristics of coral reefs. 

 

We used the most comprehensive distribution data of coral reefs from the UNEP World 

Conservation Monitoring Centre (UNEP-WCMC) and the WorldFish Centre (UNEP-WCMC et al., 

2018), combined with data from the Indonesian Geospatial Information Agency (BIG) as a baseline 

map for a detailed survey conducted in 2016 and 2017 (Fig. 3a). The use of GIS technologies will 

help to perform spatial analysis here. The next step is to develop a DEM from the 2014 bathymetric 

map of Indonesia at a scale of 1:200,000, produced by the Indonesian Hydro-Oceanographic Agency, 

which detailed with field measurements using a high-resolution marine geophysical instrument, called 

StrataBox (Fig. 3b). 

DEM data is essential while studying the Earth's morphology (Nistor et al., 2019; Kongmuang et 

al., 2020). DEM data generated using geostatistical analysis, i.e., the simple Kriging process with the 

first order for trend removal and an exponential semivariogram model. Kriging was used in this study 

since the data is normally distributed and stationary. Furthermore, Kriging is the most excellent 

interpolation method since it is unbiased, it performs better, and had the smallest error values 

(Zimmerman et al., 1999; Schwendel et al., 2012; Arun, 2013; Arétouyap et al., 2016; Mutaqin et al., 

2019a). 
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Classification of coast typology refers to the most dominant processes in the coast from Shepard 

(1973), i.e., the primary coast, which is mainly formed and controlled by land processes, and the 

secondary coast, which is shaped primarily by the sea or by marine organisms.  

 
Fig. 3. Survey and field measurements of: a) coral reefs, b) bathymetric data, and c) coast typology. 

 

Coast typology identified from a 2016 of SPOT 6 and 7 imagery satellite provided by the National 

Institute of Aeronautics and Space of Indonesia, which combined with Indonesian DEM data with a 

spatial resolution of 0.27-arcsecond provided by BIG (http://tides.big.go.id/DEMNAS/), as well as 

field measurements in 2017 and 2019 (Fig. 3c). 

3. RESULTS AND DISCUSSIONS  

3.1. Computational analysis 

The value of the mean, RMSE, mean standardized error, root mean squared standardized error, 

and average standard error is shown in Table 1 which calculates automatically in ArcGIS software 

based on Equations (1)-(5):  

 
Mean: ∑ (�̂�(𝑠𝑖) − 𝑧(𝑠𝑖))

𝑛
𝑖=1

𝑛
⁄

 

(1) 

RMSE value: 
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2
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Average standard error: 

√
∑ �̂�2(𝑠𝑖)
𝑛
𝑖=1

𝑛
 

(5) 

where Z(si) is the measured value at the ith location; n is the number of measured values; and 𝜎 is 

variance parameter. 
                                                                            Table 1.  

Cross-validation for the bathymetric model. 

Parameters Value 

Mean 0.16 

RMSE value 3.85 

Mean standardized error 0.04 

Root mean squared standardized error 1.66 

Average standard error 2.26 

 

The quality of DEM can be identified through a small RMSE value. The smallest RMSE implies 

that the algorithm has accurately estimated the calculated values. Furthermore, the validity of DEM 

data generated using geostatistical analysis can be identified through several criteria, among others: 

1) the mean standardized error is near zero; 2) the value of average standard error and the root mean 

squared prediction error is not far adrift; 3) the value of root mean squared standardized error is 

approximately 1 (Li and Tang, 2011; Zhu, 2016; Mutaqin et al., 2019a). Based on those parameters, 

bathymetric models in our study can be categorized as a valid model. The bathymetric model of the 

Alas Strait, which has 10-m spatial resolution, shows depths varying from 0 m in the shoreline to a 

maximum depth of approximately 200 m in the mid-channel. 

3.2. Spatial distribution of coral reefs 

Based on the bathymetric model and field measurements, we can identify that spatially, coral 

reefs coverage on the eastern part of Lombok is the most extensive in Lombok Island with an area of 

61.89 km2 from total coverage of 137.34 km2 (45.1%). Furthermore, coral reefs on the eastern part of 

Lombok are mostly fringing reefs and developed on shallow continental shelves in depth between 0-

20 m and located close to the main island. Fringing reefs are frequently found on mainland coasts, 

morphologically simple, and appear as shore-attached organisms (Kennedy and Woodroffe, 2002; 

Davidson-Arnott, 2010). In the eastern part of Lombok, coral reefs develop mostly in areas with linear 

sandy beaches as well as in bay heads. However, coral reefs did not found in all areas in the eastern 

part of Lombok. Four bathymetric profiles were created to obtain detailed information about the 

spatial distribution of coral reefs which also compare with bathymetric data and coast typology. 
Profiles A and D were used to represent areas with coral reefs, while profiles B and C represent areas 

without coral reefs. In bathymetric profile A (Fig. 4a), coral reefs were located in a relatively flat 

nearshore morphology (slope up to 0.6 degrees), sandy seabed materials, with a distance up to 1 km 

seaward, and the depth reach 19 m. Bathymetric profile D (Fig. 4d) shows that coral reefs were 

located on a very gentle slope (up to 1.1 degrees), sandy seabed materials, up to 13 meters of depth, 

and a distance of up to 1 km from the shoreline. In front of the affected area from the 1257 CE Samalas 

eruption (Mutaqin et al., 2019a), we identified that there were no living coral reefs, represents by 

profiles B and C (Fig. 4b and Fig. 4c). In a distance of 1 km toward the sea, profiles B and C have 

similar morphological characteristics with profiles A and D, i.e., very gentle slope. Still, the depth is 

only up to 10 m with the conditions of murky water. 
This phenomenon may be triggered by the landscape evolution following the 1257 CE Samalas 

eruption that produces more than 4.4 x 106 m3 of pumice-rich PDCs. Following the 1257 CE eruption, 

volcanic materials from Samalas reached the Alas Strait and resulted in the coast progradation at 

specific locations along the shoreline, e.g., in Korleko. The 1257 CE materials had buried almost all 

the pre-eruption coral reefs in this area and highly eroded since then (Mutaqin et al., 2019a). Several 

studies have also mentioned the impacts of volcanic materials at sea from different perspectives. In 

1988, the lava from the eruption of Gunung Api in Banda Island, Indonesia, entered the sea and buried 

about 70,000 m2 (Casadevall et al., 1989) of the coral reef (Sutarna, 1990) to a depth more than 50 m.  
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In other cases, suspended volcanic ash following the 2003 CE eruption in Anatahan, the Northern 

Mariana Islands reduced the underwater visibility up to 2-meter (Vroom and Zgliczynski, 2011). 

Consequently, the maximal living coral cover has decreased by about 35% with poor conditions, and 

most of them displayed signs of stress in the form of coral bleaching (Vroom and Zgliczynski, 2011). 

 

Fig. 4. Spatial distribution of coral reefs and coast typology in the eastern part of Lombok. 
 

In 1994, a volcanic eruption in Rabaul Caldera, Papua New Guinea, produced large volumes of 

ash and pumice, which completely buried the coral reefs around Rabaul Harbor (Maniwavie et al., 

2001). Although the coral reefs had extensively recolonized in the two years following the eruption, 

the volcanic ash had succeeded in decreasing the live coral cover from 50% before the eruption to 0% 

in the aftermath of the eruption. This rapid recolonization may have happened if the remobilization 

of volcanic materials from the mainland (i.e., suspended solid sediments and lahars) that reach the sea 

through the rivers did not disturb the underwater conditions. 

Profiles graph of A, B, C, and D show the same patterns of gradient changes in the waters of 

eastern Lombok. In general, the seabed material of the Alas Strait consists mostly of rock and sand. 

Nevertheless, there were different materials and dominant processes in the coast of Selong, Korleko, 

and Pringgabaya. In Korleko, the materials are mostly from the Samalas volcano (pumice-rich PDC 

and flood derived sand deposits), while in Pringgabaya and Selong are undifferentiated volcanic rocks 

(e.g., lava, breccia, and tuff) and an ancient debris avalanche, respectively. Coast typology in Korleko 

also categorized as a wave erosion coast since a straightened, and irregular high cliff only can be 

found in Korleko. 
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3.3. Coastal dynamics and its geomorphic impacts on coral reefs  

Coastal sedimentation occurs when the eroded material has deposited downstream by runoff into 

surface waters such as estuaries. In past years, sediment input has dramatically increased in coastal 

areas due to material from the volcanic eruption (Vogel and Märker, 2010; Ramalho et al., 2013; 

Mutaqin et al., 2019a). From the end of the 13th to the beginning of the 20th century, coastal evolution 

in the eastern part of Lombok is dominated by fluvial origin rather than by marine and anthropic 

origin. After being relatively stable since the 13th century, the coastline on the eastern part of Lombok 

has receded several hundred meters since the 1980s, probably due to a combination of natural factors 

(sea level rise driven by climate change; earthquakes) and human factors. 

Since coral reefs are very vulnerable ecosystems, pumice quarry on the eastern part of Lombok, 

as well as the destruction of the remnant coral reefs for building materials and lime production (Fig. 

5a), could have geomorphic impacts and worsen the existence of coral reefs in this area. Eroded 

volcanic material, either due to natural processes or from quarries, transported by rivers and deposited 

on estuaries (Fig. 5b). Deposited material from the river, which consists of sand deposits and pumices, 

accumulated in the nearshore zone and causing murky waters. Furthermore, those materials, along 

with eroded material from volcanic deposits along the coast, are then transported southward by 

longshore currents in the Alas Strait. Field measurement shows that within 24 hours, seawater current 

velocity is more than 1.7 m/s that occurs for 9 hours, at the interval between the first and second low 

water tides and flowing towards the south. 

 

 
Fig. 4. a) Coral reefs conditions following dynamite fishing, anchor dragging, and coral extraction (Courtesy: 

A. Landa, 2016); b) sedimentation in the estuary with a background of a cliff (pumice-rich PDC) in Korleko. 

 

Moreover, the activity of dynamite and cyanide fishing also still exists and practiced by some 

people in Lombok Island, including in the eastern part of Lombok. Since the Holocene era, human 

activities are mentioned as one of the factors that can affect coastal dynamics (Alizadeh et al., 2015). 

Thenceforth, human pressures in the coastal area in the form of coral reef extraction had increased 

due to their needs related to economic factors (Aretano et al., 2017; Mutaqin, 2017), including in the 

eastern part of Lombok although there is already regulation about it. 
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4. CONCLUSIONS 

The bathymetric model on the eastern part of Lombok was reconstructed using the kriging 

technique. The model is valid and has the RMSE with the smallest value; hence, in other words, the 

model is reasonably accurate. In general, coast typology in the eastern part of Lombok consists of two 

types, i.e., river deposition coast as well as wave erosion coast, like in Korleko. The results show a 

correlation between the 1257 CE eruption of Samalas with the existence of coral reefs in the eastern 

part of Lombok. Currently, there is no living coral reef in the nearshore of Korleko. This condition 

can be caused due to several factors, among others: 1) sedimentation from the river, 2) regular input 

of acid pumice material in the sea which transported in suspension by the rivers; and 3) illegal 

activities of coral reefs extraction and destruction of coral reefs for lime production and building 

materials. These types of studies are important to carry out, not only in Lombok Island but also in 

another area in Indonesia to understand more detail the impact of volcanic, fluvial, and anthropogenic 

activities on the coastal ecosystems and its dynamics. Furthermore, the results in this article might be 

used by the local government and related institutions as a basis for policy-making, especially on the 

management of coral reefs, sand mining regulation, and marine protected area. 
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