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ABSTRACT: 

Population growth, urbanization and rapid industrial development increase the demand for water 

resources. Groundwater is an important resource in sustainable socio-economic development. The 

identification of regions with the probability of the existence of groundwater is necessary in helping 

decision makers to propose effective strategies for the management of this resource. The objective of 

this study is to construct maps of potential groundwater, based on machine learning algorithms, namely 

deep neural networks (DNNs), XGBoost (XGB), and CatBoost (CB), in the Gia Lai province of 

Vietnam. In this study, 12 conditioning factors, namely elevation, aspect, curvature, slope, soil type, 

river density, distance to road, land use/land cover (LULC), Normalized Difference Vegetation Index 

(NDVI), Normal Difference Built-up Index (NDBI), Normal Difference Water Index (NDWI), and 

rainfall were used, along with 181 groundwater inventory points, to construct the models. The proposed 

models were evaluated using the receiver operating characteristic (ROC) curve, the area under the 

curve (AUC), root-mean-square error (RMSE), mean absolute error (MAE). The results showed that 

the predictions of groundwater potential were most accurate using the XGB model; CB came second, 

and DNN was performed the least well. About 4,990 km² of the study area was found to be in the 

category of very low groundwater potential; 3,045 km² was in the low category; 2,426 km² was 

classified as moderate, 2,665 km² as high, and 2,007 km² as very high. The methodology used in the 

study was effective in creating groundwater potential maps. This approach, used in this study, can 

provide valuable information on the factors influencing groundwater potential and assist decision-

makers or developers in managing groundwater resources sustainably. It also supports the sustainable 

development of the territory, including tourism. This methodology can be used in other geographic 

regions with a small change of input data. 
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1. INTRODUCTION 

Groundwater is indispensable to humanity. Some 2.5 billion people depend on this resource every 

day (Prasad, Loveson et al. 2020, Gómez-Escalonilla, Martínez-Santos et al. 2022). The demand for 

groundwater is increasing rapidly, due to population growth and industrial development (Dey, Abir 

et al. 2023, Morgan, Madani et al. 2023). Today, 1.9 billion people (27% of the world's population) 

live in areas that can potentially be affected by severe water scarcity (Boretti and Rosa 2019). In 2050, 

it is estimated that this figure will increase to 2.7-3.2 billion, according to differing climate change 

scenarios (Boretti and Rosa 2019, Morgan, Madani et al. 2023).  
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In Vietnam, survey data from the National Water Resources Planning and Investigation Centre 

show that the total national groundwater resource is around 91 billion cubic meters per year (250.7 

million cubic meters per day), out of which the share of fresh water represents approximately 69 

billion cubic meters per year (189.3 million cubic meters per day (Nguyen et al. 2024). Despite these 

figures, the country is currently facing severe pressure from decreasing water levels, and 

environmental pollution due to socio-economic growth and climate change. Thus, insufficient access 

to drinking water has become a major concern, and a key indicator of sustainable development 

according to international bodies (Kamali Maskooni, Naghibi et al. 2020, Prasad, Loveson et al. 

2020). Therefore, the construction of groundwater potential maps plays an important role in 

optimizing water resources. 

Several studies on the construction of such maps have been carried out using various approaches. 

The traditional method is largely based on drilling samples during field missions and hydrogeological 

testing in laboratories (Nguyen et al. 2024, Singh et al. 2024, Uddin et al. 2024). Although these 

methods can precisely identify regions with the probability of occurrence of potential groundwater, 

they are very expensive and time consuming and their application is limited to wide areas only. In 

recent years, with the development of remote sensing data and GIS technology, they have been 

effectively integrated into knowledge-based models such as AHP and weights-of-evidence used to 

delineate groundwater prospecting areas (Çelik et al. 2024, Diriba et al. 2024). However, these models 

depend on the opinion of experts, so such assessments are inherently subjective.  

Currently, with increasing computing power and advancements in algorithms, data-driven 

models are widely used by researchers to construct groundwater potential maps. The statistical 

technique has been considered one of the most appropriate methods for constructing maps at scales 

of 1:20,000 or 1:50,000. Popular statistical models used include boosted regression tree (Naghibi et 

al., 2016, Sachdeva and Kumar 2021) and weights-of-evidence (Lee et al., 2012, Tahmassebipoor et 

al., 2016). However, these models do not consider nonlinear relationships, which can lead to errors in 

the identification of areas with probability of groundwater occurrence, particularly in the context of 

climate change. Machine learning models have been developed to solve these problems; these models 

include support vector machines (Lee et al, 2018, Anh et al., 2023), random forest (Naghibi et al., 

2016, Rahmati et al., 2016), AdaBoost (Mosavi et al., 2021), and artificial neural networks (Nguyen 

et al., 2020, Tamiru and Wagari 2022). The goal of each study is to find the most effective model. 

Machine learning has the advantage of being able to mimic the complex, nonlinear relationships 

between groundwater points and environmental conditions, hydrology, climate and human activities 

without requiring an underlying understanding of physics. However, according to literature reviews, 

there are several machine learning models, and each model has advantages and disadvantages. Thus, 

selecting an appropriate model for specific data is a complex process. Additionally, extrapolation 

issues are considered a major challenge when using machine learning. This is because a machine 

learning model might not be able to make accurate predictions on data that differs significantly from 

the data used during training (Nguyen et al., 2024). 

A number of studies have been carried out in recent years in Vietnam to assess groundwater 

potential. Bien et al. (2023) used five machine learning algorithms, namely partial decision trees 

(PART), Fuzzy Unordered Rule Induction Algorithm (FURIA), multilayer perceptron (MLP), Forest 

by Penalizing Attributes (FPA), and the DECORATE ensemble of learning techniques, to construct 

groundwater potential maps for the Central Highlands of Vietnam. The results showed that the 

DECORATE model performed better than the other ones. Nguyen et al. (2024) integrated deep neural 

networks (DNNs) with the optimization algorithms Adam, Flower Pollination Algorithm, Artificial 

Ecosystem-Based Optimization, Pathfinder Algorithm, African Vulture Optimization Algorithm 

(AVOA), and Whale Optimization Algorithm to predict groundwater potential in the Central region 

of Vietnam. The results indicated the DNN-AVOA model to be more effective than the others. Ha et 

al. (2021) applied machine learning ensemble models, namely Adaboost–Quadratic Discriminant 

Analysis (ABQDA), Multiboost-Quadratic Discriminant Analysis, RealAdaboost-Quadratic 

Discriminant Analysis, to identify regions of probability of groundwater occurrence in Dak Nong 

province, Vietnam. The results showed that the ABQDA model was more accurate than the others.  
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Although there are several studies that have used machine learning to predict groundwater 

potential around the world and in Vietnam in particular, models have achieved differing levels of 

accuracy in different regions; there are no universally appropriate models. Therefore, it is necessary 

to find the appropriate algorithm(s) for each region to properly support decision makers and 

developers in the effective management of water resources, in order to better serve socio-economic 

development (Kumar et al., 2023; Masroor et al., 2023). 

The objective of this study is to evaluate the potential of groundwater by applying machine 

learning algorithms, namely deep neural networks, CatBoost (CB), and XGBoost (XGB) in the 

province of Gia Lai in Vietnam. The novelty of this study is that for the first time these machine 

learning models are used to predict groundwater potential in this study area, where the problem of 

managing water resources is a great challenge, particularly in the context of climate change. This 

study also fills important knowledge gaps on groundwater potential investigations in Gia Lai 

Province, Vietnam. The results can support decision makers in proposing effective strategies in the 

management and optimization of water resources, not only in a specific region, but in other similar 

regions in the world (with minor changes in the input data).  

2. STUDY AREA AND DATA USE  

2.1. Study area 

Gia Lai Province (12°58’40”–14°37’00”N, 107°28’04”–108°54’40”E) covers 

a natural area of 15,536.9 km2 in the north of Vietnam’s Central Highlands. Gia Lai is located 

almost entirely west of the Truong Son range (Fig. 1).  

 
 

Fig. 1. Location of the study area. 
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The terrain gradually lowers from north to south and tilts from east to west, with quite complex 

alternating hills, plateaus and valleys. The average altitude is from 800 to 900 meters above sea level. 

The highest point is Kon Ka Kinh (1,748 m) in K'Bang district, while the lowest point is downstream 

of Ba River (100 m). The plateau is a popular and important terrain form of Gia Lai, with two plateaus 

made of basalt rock: Kon Ha Nung and Pleiku. Mountainous terrain accounts for 2/5 of the entire 

province's area, most of it located in the north, the mountain terrain is strongly separated, the surfaces 

of other terrain types of Gia Lai such as plateaus and valleys are also scattered with mountain. 

Relatively low-lying areas often form rivers when passing through sudden fault zones, typically An 

Khe valley in the East and Cheo Reo-Phu Tuc valley in the Southeast of the province. 

Gia Lai has a provincial capital city, Pleiku, and two towns, An Khe, located in the West, and 

Ayunpa, located in the Southeast of the province. Pleiku City is located on Road 14, connecting with 

the provincial cities in the North and South, Kon Tum and Ban Me Thuat. Road 19 connects Pleiku 

City with the coastal city of Quy Nhon (Binh Dinh province) through An Khe town. Road 26 runs 

through Pleiku City, Ayunpa town to Tuy Hoa City (Phu Yen province). The province has an 

abundance of surface water, estimated at 23 billion m³, distributed across the major river systems of 

the Ba and the Se San and tributaries of the Serepok. Groundwater potential is also considerable, and 

mainly concentrated in the basalt eruption water system, with total reserves of level A+B reaching 

23,894 m3/day, level C1 61,065 m3/day, and level C2 989,600 m3/day. The surface water system also 

meets the community water needs of the province. 

The climate is high-altitude tropical monsoon and is characterized by two distinct seasons: the 

rainy season lasts from May to October, and the dry season from November to April. The western 

Truong Son region enjoys average rainfall ranging between 2,200 and 2,500 mm, while in eastern 

Truong Son the figure is between 1,200- and 1,750-mm. Rainfall in the rainy season months accounts 

for about 75% of the total annual rainfall. Gia Lai province has 27 soil types, grouped into 7 main 

categories: red-brown and yellow-brown soils growing on basic and neutral igneous rocks (Rhodic 

Ferralsols), yellow-red soils on acidic magma soils (Ferralic Acrisols), red-yellow humus soils on 

mountains (Humic Acrisols), yellow-red soils changed by planting rice (Plinthic Acrisols), alluvial 

soils that are not deposited annually (Distric Fluvisols), eroded soils with bare stones (Lithic 

Leptosols). 

Although Gia Lai province has abundant surface water sources, their distribution is uneven spatial 

and seasonal depending. In addition, the demand for domestic and irrigation water for industrial crops 

such as coffee, pepper, and cashew, as well as for fruit trees, is very high and increasing in recent 

years. En final, the Gia Lai province frequently experiences drought conditions. For example, in 2019, 

drought caused damage to thousands of acres of agricultural land and the damage to the economy was 

estimated at around 2 million dollars. Therefore, the construction of groundwater potential maps for 

the province is essential. 

2.2. Data use 

Well yields  

Springs and wells are the points on land surfaces where groundwater is present. Spring and well 

data play a key role in the use of machine learning to predict groundwater potential. Thee is a complex 

relationships between groundwater points and natural and socioeconomic characteristics (Naghibi and 

Pourghasemi 2015, Prasad et al., 2020). Due to the high costs in the sampling process, spring and well 

data from previous studies were collected from the Department of Agriculture and Rural Development 

of Gia Lai Province and from a field mission, using GPS. 89 springs and well points were used as the 

final input data for the machine learning models. 

This study used the binary model to identify areas with the probability of occurrence of 

groundwater potential. Therefore, the collection of non-spring and non-well samples was necessary 

to ensure the accuracy of the prediction model (Nguyen et al., 2024, Sharma et al., 2024, Singh et al., 

2024). For the spatial model, several researchers have recommended that the number of spring and 

well points to be equal to the number of non-spring and non-well points.  



 Huu Duy NGUYEN, Van Trong GIANG, Quang-Hai TRUONG, Gheorghe ȘERBAN and Alexandru-Ionut … 17 

 

Others have recommended that the number of non-spring and non-well points to be greater, if the 

study area is large (Arabameri et al., 2021). As Gia Lai is considered moderate in size, we collected 

an equal number of each of the two sets of points. 82 non-spring and non-well points were collected 

randomly throughout the study region with ArcGIS 10.6 software. A total of 181 data points were 

prepared to build the machine learning models. These points were identified as either 1 (for spring 

and well points) or 0 (for non-spring and non-well points). 

Groundwater influencing factors 

The selection of factors influencing the probability of groundwater occurrence is a difficult task, 

due to the complex and nonlinear nature of groundwater. There are no standard guidelines for their 

selection. The ambitious goal of this study was to integrate as many factors as possible. In the end, 12 

influencing factors were selected, namely: elevation, curvature, aspect, slope (Fig. 2a); river density, 

distance to road, NDVI, NDBI (Fig. 2b); NDWI, rainfall, soil type and LULC (Fig. 2c).  

Elevation, aspect, curvature, and slope were extracted from the ALOS PALSAR digital elevation 

model with a 12.5 m resolution. A topography map with a 1/50,000 scale was used to determine river 

density and distance to road with the ArcGis 10.6 Line Density and Euclidean Distance tool.  

September 2023 Sentinel 2A imagery was used to extract NDVI, NDBI, and NDWI. 2023 LULC 

data was obtained from  

https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e

2&fbclid=IwAR0V3ZEdUqhn79qN_JNPMtswxWfi2dE1_Gj-1ZD_XcN7oPyGMSn3-scE9KY  

Annual rainfall from 2022 was accessed at https://chrsdata.eng.uci.edu/ . All these factors have 

been re-sampled at 12.5 m resolution using the ArcGIS 10.6 software. 

Elevation and slope play an important role in the probability of the occurrence of groundwater 

resources, because altitude is directly linked to surface vegetation and recharge resources. In flat and 

low-lying regions, rainwater has more time to infiltrate and recharge groundwater. In the study region, 

the altitude ranges from 86 to 1753 m. The low-altitude regions are concentrated in the south and west 

(Ehsan et al., 2024, Oguntoyinbo et al., 2024). High altitude areas are distributed in the Kon Ka Kinh 

National Park area in the Northeast of the province. 

Slope is another important topographical factor for a groundwater potential model because it is 

directly tied to the hydrological process and soil infiltration capacity. Regions with low slopes have 

the tendency to concentrate recharge resources (Raj et al., 2024). Areas with large slopes are 

concentrated in the eastern and northern mountains, and areas with small slopes are distributed in the 

Pleiku plateau area, located in the central and western areas of the province, and along the An Khe 

and Cheo valleys, Reo- Phu Tuc in the East and Southeast of the province. 

Curvature was selected as a conditioning factor because it is directly related to the capacity of 

water accumulation and infiltration in the aquifer (Ray 2024). In Gia Lai, the curvature difference is 

not large by region, but tends to be small in river valleys, especially Ba River. 

Aspect is linked to evaporation capacity and describes the flow direction, which strongly 

influences the recharge capacity of a region (Ehsan et al., 2024, Sharma et al., 2024). In the study 

area, the aspect is more complex in the northern mountainous areas and partly in the east. 

LULC was chosen as it strongly influences hydrological processes, for example infiltration 

capacity, evaporation, and surface flow. The change of of land use has a significant influence on the 

recharge capacity of the groundwater resource. The increase in the surface area reduces the infiltration 

capacity of the soil, which leads to a reduction in the recharge capacity of the groundwater (Ray 2024, 

Tiwari et al., 2024). In Gia Lai, urban and construction lands are distributed in Pleiku city, An Khe 

and Ayunpa towns and along national and provincial highways; cultivated land is distributed mainly 

on the Pleiku and Kon Ha Nung plateaus, on river terraces; and natural and planted forests in mountain 

and hill areas. NDVI determines the density of vegetation in a region; therefore, it is considered an 

important factor in the probability of the occurrence of groundwater in a region.  

NDBI measures the density of construction. Increasing the construction area reduces the 

infiltration capacity of the soil, which results in reducing the recharge capacity of groundwater (Huang 

et al., 2024, Rehman et al., 2024). High construction density is concentrated in Pleiku City, An Khe 

and Ayunpa towns.  

https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2&fbclid=IwAR0V3ZEdUqhn79qN_JNPMtswxWfi2dE1_Gj-1ZD_XcN7oPyGMSn3-scE9KY
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2&fbclid=IwAR0V3ZEdUqhn79qN_JNPMtswxWfi2dE1_Gj-1ZD_XcN7oPyGMSn3-scE9KY
https://chrsdata.eng.uci.edu/
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Fig. 2a. Conditioning factors used for the groundwater potential model: elevation, curvature, aspect, slope. 

 

NDWI is considered an indispensable factor in identifying areas with the probability of 

groundwater occurrence because it is related to the groundwater recharge capacity in a region. The 

value of NDWI is proportional to the recharge capacity (Ghosh and Bera 2024). In Gia Lai, the NDWI 

index tends to be high in the Northeast, Southeast, Northwest and West; low in the center and south. 



 Huu Duy NGUYEN, Van Trong GIANG, Quang-Hai TRUONG, Gheorghe ȘERBAN and Alexandru-Ionut … 19 

 

  
 

  
 

Fig. 2b. Conditioning factors used for the groundwater potential model: river density, distance to road, 

NDVI, NDBI.  

 

Rainfall can increase groundwater recharge and so directly influences groundwater potential. 

Recharge depends on the amount of precipitation; precipitation value is proportional to groundwater 

recharge capacity (Raju et al. 2024). In the province, the rainfall is larger, about 1800 -2398 mm, 

concentrated in the northern region including mountains facing the wind; The Ba River valley area 

located in the Southeast has small rainfall, about 1432 mm -1600 mm. 
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Fig. 2c. Conditioning factors used for the groundwater potential model: NDWI, rainfall, soil type, LULC. 
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Soil type plays an important role in predicting groundwater potential because it links to the 

permeability capacity of aquifer material and porosity of soil, which influence the groundwater 

recharge capacity (Dandapat et al., 2024, Nguyen et al., 2024). In Gia Lai, red-brown and yellow-

brown soils develop on basic and neutral igneous rocks (Rhodic Ferralsols) distributed in the Pleiku 

Plateau and Kon Ha Nung Plateau. The soil absorbs water poorly but holds water well. Yellow-red 

soil on acid igneous soil (Ferralic Acrisols) has the ability to absorb water quickly, but poorer water 

retention ability. Humic Acrisols on the mountain have average water permeability and water holding 

capacity. Yellow-red soil changed due to rice cultivation (Plinthic Acrisols) has poor water absorption 

and retention capacity. Alluvial soils not deposited annually (Distric Fluvisols) have average water 

permeability and water holding capacity. Soil with eroded rocks (Lithic Leptosols) has very poor 

water absorption and water holding capacity. Alluvial soils not deposited annually (Distric Fluvisols) 

have average water permeability and water holding capacity. Soil with eroded rocks (Lithic Leptosols) 

has very poor water absorption and water holding capacity. 

Rivers are, from a hydro-geological viewpoint, very important for controlling the movement and 

storage of potential groundwater. Areas with a high density of rivers and streams often have 

significant groundwater reserves (Ray 2024). In the study area, the river density is greatest along the 

Ba River valley in the east and the western edge of the Pleiku plateau.  

Distance to road is considered another important factor because road construction can influence 

the infiltration capacity of the soil. Additionally, road construction can influence water drainage. All 

this can influence the water table recharge (Senapati and Das 2024). 

3. METHODOLOGY 

The construction of the groundwater potential map in Gia Lai province in Vietnam consisted of 

four main steps. The first was the preparation of input data, including the inventory map and 

conditioning factors; the second was the construction of groundwater potential models; the third was 

the validation of models, and the fourth was the analysis of groundwater potential map (Fig. 3). 

i) Input data comprised the groundwater inventory map and 12 conditioning factors. The map 

was compiled using several sources: previous studies, data from the Department of Agriculture and 

Rural Development, and from a field mission. As conditioning factors were measured with different 

units, it was necessary to normalize the data with the assumption that the original values of all layers 

were retained, but the input database was standardized on similar ranges. 

ii) Construction of groundwater potential model. The models DNN, CB, and XGB were used to 

predict groundwater potential. The DNN structure comprised three layers: the first was the input layer 

with 181 springs, well, non-spring, and non-well points, and 12 conditioning factors. These data was 

processed in the second layer, with 3 hidden layers and 11 neurons per layer. The weights in the 

hidden layers were optimized by Adam's optimization algorithm. In the end, the output layer consisted 

of two layers: groundwater and non-groundwater. 

The performance of CB model depends on parameters such as iteration, depth, train direction, 

and loss function. In this study, the values of these parameters were 100, 3, logloss, and crossEntropy, 

respectively. The performance depended on n_estimators, max_depth, learning rate, subsample and 

colsample by tree. These parameter values were 200, 4, 0.004, 0.4 and 0.4, respectively. 

It should be noted that the machine learning models were developed on Python languages using 

the Tensorflow libraries. 

iii) Evaluation of the performance of the proposed models. Statistical indices were used to 

evaluate the performance of the proposed models, namely AUC, RMSE, MAE and R². 

iv) Analysis of the groundwater potential map. After evaluating the proposed models, they were 

used to construct groundwater potential maps for Gia Lai province. This process was carried out by 

assigning the values of the 12 conditioning factors to all pixels in the entire study area. The pixels in 

the study area are then identified as either groundwater or non-groundwater. 
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3.1. Deep neural networks (DNN) 

 

 DNNs constitute a branch of machine learning that uses neural networks to solve complex, real-

world, non-linear problems (Wang et al., 2022). DNNs have attracted the attention of researchers in 

recent years, particularly in Earth sciences, due to their ability to automatically learn complex data 

abstractions. The DNN model includes 3 layers: the input layer contains information related to 

groundwater prediction factors; this information is transmitted to and processed by the second layer, 

which includes one or more hidden layers; the output of the third layer is labeled groundwater and 

non-groundwater. With a large number of hidden layers, DNN models can solve many complex 

problems and are considered more powerful than simple neural networks (Bai et al., 2022, Hakim et 

al., 2022). The DNN model uses a backpropagation algorithm, which means that the output error is 

propagated to the hidden layers to update the weights. The DNN model computes the gradient of the 

loss function for each weight according to the chain rule and avoids redundant calculations from 

intermediate factors. During this operation, each neuron uses activation functions to process 

information in hidden layers. These activation functions are used for gradient training and are 

represented by rectified linear units (ReLU) (Hakim et al., 2022). There are many known optimization 

algorithms used to calculate weights of DNN models, such as SGD and AdaGrad. In this study, the 

weights of the DNN model were calculated using the adaptive moment (Adam). Adam is a stochastic 

optimization algorithm based on a first-order gradient. During the operation, Adam maintains the 

mean square of past slopes and also maintains the average of past slopes. Adam has the advantage of 

being simple to implement and requiring little memory. Previous studies have also shown Adam's 

optimization algorithm to be more accurate than other stochastic optimization models (Hakim et al., 

2022).  
 
3.2. CaTBoost (CB) 

 CB was first introduced by Yandex to solve both classification and regression problems using 

decision trees (Liang et al., 2023). CB is based on gradient boosting with the ideas of transforming 

weak learners into strong learners. It includes two main features: it works with categorical data (“Cat”) 

and it uses gradient boosting (“Boost”) (Tran et al., 2021). Gradient boosting is a process in which 

many decision trees are built iteratively (Koch et al., 2021). Each subsequent tree improves the result 

of previous tree, which optimizes the results. Each decision tree is then an evolution of an initial set 

of data. CB incorporates innovative techniques, such as target encoding and combining statistics from 

categorical variables, to leverage information present in categorical features and improve predictive 

performance (Abba et al., 2023, Yavuz Ozalp et al., 2023). 

3.3. XgBoost (EXT)   

 XGB, or eXtreme Gradient Boosting, was first developed by Tianqi Chen in 2016 and can solve 

classification and regression problems (Chen and Guestrin 2016). The basic idea is to combine 

gradient descent with boosting methods in order to create a more powerful machine learning algorithm 

(Zounemat-Kermani et al., 2021). This involves assembling several algorithms with relatively low 

performance to create one that is much more efficient and satisfactory (Lim and Chi 2019, Tran et al., 

2021). The result consists of the predictions of all the chained models. This method improves the 

model performance and stability while reducing its variance. Therefore, ensemble learning can 

achieve a much higher level of accuracy than using any of the individual models separately (Ghosh 

and Bera 2024). 

                               

3.4. Performance assessment 

The models proposed in this study were evaluated using the statistical indices: AUC, RMSE, 

MAE. Details of information can be viewed in (Naghibi, Hashemi et al. 2020, Wang et al. 2023, 

Xiong, Guo et al. 2023): 
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                                              𝑅2 = 1 −  
∑ (𝑦𝑖−ÿ⬚)2𝑛

𝑖=1

∑ (𝑦𝑖−ÿ)2𝑛
𝑖=1

                                                       (4) 

4. RESULTS AND DISCUSSIONS 

4.1. Pre-processing results 

Careful selection of conditioning factors plays an important role in the performance of any 

prediction model. This study used data-driven models to analyze the relationships between spring and 

well points and the explanatory variables and, therefore, factor selection can help models concentrate 

important factors and eliminate non-useful factors. This study used the RF technique to select the 

factors and assign a weight to each one. Figure 4 illustrates the importance of each conditioning 

factor. The results showed that distance to road, soil type, NDBI, and slope were the most influential 

in identifying areas of probable groundwater. These factors are directly linked to the capacity of water 

infiltration and accumulation, all of which influences the recharge capacity of water table. In Gia Lai 

province, construction area has been growing at an increasing rate in recent years, as a result of 

population growth and economic development. This increase has been mainly concentrated in the low 

slope region. 

 
Fig. 4. The importance of groundwater conditioning factors, using RF. 

 

NDWI, rainfall, LULC, and elevation were fifth to eighth most important, respectively. NDWI 

plays an important role in the occurrence of groundwater in a region because it is directly related to 

recharge capacity. In Gia Lai province, the region with a high NDWI value is concentrated in the 

eastern, southern and central regions of the province. Rainfall is important as it provides a source of 

water that can infiltrate the ground and recharge underground aquifers. Precipitation tends to 

accumulate in the region at low altitudes and, therefore, in these regions, conditions are conducive to 

strong recharge of underground aquifers. LULC reflects human activity in a region. The reduction of 

surface vegetation and increase of construction area led to the accumulation of water on the surface, 

which reduced the recharge capacity of underground aquifers.  

Curvature, aspect, and river density appear to have less influence on the probability of occurrence 

of groundwater potential in Gia Lai province. 
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 4.2. Modeling assessment results 

  

This study used the AUC index to evaluate the performance of proposed models. Figure 5 shows 

the accuracy of proposed models when using training and validation data. The results show that the 

XGB model identified regions with a probability of occurrence of groundwater potential more 

accurately than the CB and DNN models. The DNN model was least effective. 

For the validation data, the XGB model further identified regions with a higher probability of 

occurrence of groundwater potential than other models. The CB model ranked second. The DNN 

model performed worse than the XGB and CB models. The DNN model required a significant amount 

of data to provide more accurate results. Given the difficulties encountered in collecting data on spring 

and well points, only 82 points were available. Therefore, there may not have been enough data to 

properly train the DNN models (Fig. 5). 

 
 

 

Fig. 5. AUC values for the training dataset (top) and validation dataset (bottom). 
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In addition to the AUC values, this study used the statistical indices RMSE, MAE, and R² to 

evaluate and compare the proposed models. The results show that the XGB model returned RMSE, 

MAE, and R² values higher than the other two models for the training data. For the validation data, 

XGB performed even better in terms of RMSE, MAE, and R². CB came second, and DNN performed 

least well. 

In general, all proposed models were suitable for identifying regions with the probability of 

occurrence of groundwater potential in Gia Lai province. However, we recommend the use of XGB 

because several studies have pointed out that XGB has advantages in being able to solve problems 

with precision when data are not sufficient (Table 1).  

 
Table 1.  

Precision of DNN, XGB, and CB. 

 
Training dataset Validation dataset 

RMSE MAE AUC R2 RMSE MAE AUC R2 

XGB 0.2 0.15 0.996 0.82 0.35 0.25 0.91 0.814 

CB 0.4 0.36 0.929 0.80 0.41 0.373 0.87 0.796 

DNN 0.41 0.373 0.835 0.78 0.42 0.383 0.77 0.779 

  

4.3. Groundwater potential mapping 

After the evaluation of the machine learning model, all the proposed models are performed to construct the 

groundwater potential map. The calculation of groundwater value in Gia Lai province is carried out by 

aggregating all pixels, which have 12 conditional factor values associated with them, in the machine learning 

model. The result of the model represents the groundwater value of the entire study area, on a scale from 0 to 1. 

The values were divided by five classes: very low, low, moderate, high and very high in using Break Natural 

methods. Figure 6 shows the maps of groundwater potential produced by XGB, CB and DNN-Adam. The results 

reported that according to XGB, 4990 km2 of the province constituted the area of very low groundwater potential, 

with 3045 km2, 2426 km2, 2655 km2, and 2077 km2 were in the low, moderate, high and very high categories. 

For the CB model, the very low category covers 3325 km², low - 3573 km², moderate - 3489 km², high - 2308 

km², and very high - 2489 km². According to the DNN-Adam model, approximately 3580 km² of the province is 

in the very low area of groundwater potential, 2198 km² - low, 2741 km² - moderate, 3377 km² - high, and 3298 

km² - very high. 

In general, although there are differences between the models, we found out that the regions of high and 

very high groundwater potential are located in the districts of Pleiku, Dak Doa, Ia Grai, and Chu Prong, as well 

as a small part of K’Bang. Although these areas are densely populated and have high construction density, the 

distance to the road is small, the rainfall quite large, slope is small, and the vegetation consists mainly of coffee 

and rubber, which helps to absorb and retain water well. Basalt soil is quite permeable and retains water well, 

providing a lot of water for the Pleistocene Basalt eruptive fissure aquifer.  

The area with average groundwater potential is mainly distributed on the edge of the Pleiku plateau and Ba 

River valley in the south and southeast of the province. This area's terrain is less steep, there is not much rainfall, 

the road density is quite large, and the alluvial soil absorbs and retains water quite well, providing water for the 

aquifer, cracks and seams of Neogene sedimentary lagoon formations and modern alluvial porous aquifers. 

Areas with low and very low groundwater potential are distributed mainly in the mountainous parts of 

Northeast, East and Northwest. Although there is heavy rainfall and forest cover, the construction density is 

small, but the altitude is high and slope steep, distance to the road long, and the weathered crust from 

metamorphic rocks has a weak ability to absorb and retain water, so the amount of surface water supplied to 

groundwater in the rainy season is very limited. 
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Fig. 6. Groundwater potential maping for the Gia Lai province. 

 



28 

 

5. DISCUSSION  

Groundwater resources play an important role in the development of agriculture and industry all over the 

world (Pan et al., 2023, Huang et al., 2024). Construction of groundwater potential maps can be a successful 

method to support decision makers in effectively managing groundwater resources (Anh et al., 2023, Kumar et 

al., 2023, Vafadar et al., 2023, Wang et al., 2023). Many studies have used different methods to construct maps 

of groundwater potential.  

Regional studies are still necessary to obtain appropriate information for water resource management in a 

specific locality. To this end, the objective of this study was to construct a groundwater potential map based on 

machine learning, namely DNN, XGB and CB, in Gia Lai province of Vietnam. 

With the development of remote sensing and GIS, machine learning has received the attention of researchers 

in recent years, due to its application in spatial data modeling. One of is advantages is the ability to eliminate 

limitations linked to the lack of precise data. However, overfitting problems are considered a big challenge when 

using machine learning and each region has different characteristics, so selecting appropriate models is very 

important to build a groundwater potential map with accuracy (Anh et al., 2023, Wang et al., 2023, Nguyen et 

al., 2024).  

Out of the three models used in this study, the XGB model was found to perform better than the other two. 

Several studies have also highlighted its ability to explain complex relationships between variables. Thus, it is 

considered an attractive choice for constructing a groundwater potential map. Additionally, XGB combines 

regularization techniques, which helps reduce overfitting issues. Additionally, it has the ability to handle missing 

data (Pan et al., 2023, Ngai et al., 2024). All these features allow the XGB model to yield more accurate 

predictions than other models.  

The CB model came second. It can resolve missing data issues natively and is one of the most powerful 

algorithms in solving overfitting problems, by combining automatic regularization mechanisms (Gao et al., 2024, 

Raheja et al., 2024). The DNN model performed worst. In general, DNN models are suitable for big data studies. 

However, in this study, due to the difficulties encountered in data collection, only 181 data points were collected 

(Wang et al., 2024). The DNN model was not suitable for constructing groundwater potential maps. 

The remaining question of this study is whether the proposed models can predict groundwater potential in 

the context of climate change, when precipitation and temperatures are not stable. This may not be an issue if the 

model can learn from climate change data. However, data collection is a big challenge, especially in developing 

countries like Vietnam, where data sharing policies are restrictive and financial resources limited (Nguyen et al., 

2024, Nguyen et al., 2024, Nguyen et al., 2024). 

The results of this study have also important implications for planners. The connection between water, 

particularly groundwater, and climate changes has been stressed out by previous studies (Dragoni and Sukhija, 

2008, Earman and Dettinger, 2011, Amanambu et al., 2020). At the same time, other authors underlined the 

potential of planning to mitigate the impact of climate change (Wilson, 2006; Hurlimann and March, 2012, 

Petrişor et al., 2021). A good example of the relationship between water and planning comes from a World Bank 

study carried out in Romania, in order to develop specific guidelines for integrating the flood risk management 

in planning, with specific provisions related to groundwater (World Bank 2023). Therefore, accounting for the 

groundwater potential in planning may help increasing urban resilience to climate changes. In this regard, 

provided that other studies pointed out the presence of derogatory planning in Vietnam (Petrişor et al. 2020), i.e. 

making local exemptions from national planning provisions, our results plead for the need to enforce the planning 

provisions regarding underground water when planning for regions similar to the one investigated in our study. 

In addition, the important role in territorial or urban planning, the results of this study play an important role for 

tourism planning, because developing tourism, relies on tourist destinations that need to use water directly (food, 

accommodation, etc.) or indirectly. In these destinations water must be used in a way that balances tourist and 

resident populations, while ensuring water security. Therefore, developing new precise methods is very important 

to support decision-makers in tourism development too. 

6. CONCLUSIONS 

Groundwater resources play an important role in sustainable socio-economic development, particularly in 

the context of climate change and population growth. Therefore, the construction of precise groundwater 

potential maps is necessary to support those responsible for optimizing water resources. The objective of this 

study was to construct a potential groundwater map using the machine learning techniques DNN, XGB, and CB 

in the Gia Lai province of Vietnam. The conclusions of this study are stated below. 
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- The traditional machine learning model was more powerful than the deep learning model for the 

groundwater potential model, due to the collection of input data. The methodology in this study can be applied 

in other regions to construct groundwater potential maps. 

- A comparison of the three proposed models showed XGB to have a better performance, with an AUC 

value of 0.91; second was CB (0.87), and third DNN (0.77). A successful implementation of these models can 

support decision makers in proposing effective strategies to optimize water resource management. 

- The regions of high and very high probability of groundwater are concentrated in the west of the province, 

in the districts of Pleiku, Dak Doa, Ia Grai and Chu Prong, and a small part of K’Bang. 

Although this study was successful in constructing groundwater potential maps, there were limitations 

relating to the selection of non-spring and non-well points. There are no universal guides for selecting these 

points. They were randomly selected from the study region. Inaccurate selection of areas without groundwater 

can lead to errors of the groundwater potential map. In addition, areas with groundwater potential are affected 

by surface temperature; regions with high surface temperatures are less likely to contain groundwater. Therefore, 

future research should try to integrate surface temperature into the groundwater potential model. Finally, the 

potential of groundwater is strongly influenced by climate change and human activities. Therefore, future studies 

should try to integrate these factors into a machine learning model to predict the future potential of groundwater. 

The results of this study can support decision makers in identifying regions with high and very high 

probability of groundwater so they can implement appropriate infrastructure for developing agriculture and 

industry. 
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