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ABSTRACT 

The geoid serves as a critical reference surface for precise mapping applications, particularly in the 

context of satellite-based positioning systems like the Global Navigation Satellite System (GNSS). 

While GNSS offers efficient positioning solutions, it relies on an ellipsoidal surface that lacks physical 

meaning for vertical reference, highlighting the need for accurate geoid height models. A precise geoid 

model is essential for converting geodetic heights into orthometric heights, which are crucial for 

practical applications. This study investigates potential discrepancies among geoid models derived 

from different methods, focusing on the Stokes-Helmert (SH), remove-compute-restore (RCR), and 

Kungl Tekniska Högskolan (KTH) methods. The primary differences among these methods lie in their 

approaches to modifying the Stokes formula and their reduction schemes. Conducted in the central part 

of Java Island, Indonesia, this study uses terrestrial gravity observations to model the geoid and 

GNSS/leveling data for validating the geoid models. The RCR method demonstrated the highest 

accuracy, with an RMS error of 8.4 cm, outperforming the KTH method (9.2 cm) and the SH method 

(10.7 cm). Discrepancies between SH and RCR models were less pronounced, with differences around 

30 cm, compared to over 1 meter between KTH and the other methods. The comparison with the global 

EGM2008 model showed that the gravimetric geoid models were more accurate, with RMS differences 

reaching up to 10 cm, primarily due to systematic differences with the EGM2008 model. Statistical 

analysis using t-tests with 95% confidence intervals indicated that the differences among SH, RCR, 

and KTH methodologies were not statistically significant. Despite the RCR method's apparent superior 

performance, these differences did not achieve statistical significance. The study notes the limitations 

of using a relatively limited terrestrial gravity dataset and emphasizes the need for incorporating 

additional gravity data, such as recent airborne gravity datasets, to improve geoid model performance. 

Future research should also aim for denser GNSS/leveling observations with stricter measurement 

requirements to provide a more robust absolute assessment of gravimetric geoid models. 
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1. INTRODUCTION 

Geoid is an equipotential surface, that best approximates the mean sea level in the ocean under 

an ideal condition and mainly serves as a vertical reference system (Sideris, 2021). The availability 

of a precise geoid height (undulation) model, defining the deviation between the geoid and ellipsoidal 

surfaces is important in precise mapping applications, particularly in the era of satellite-based 

positioning systems, i.e. using Global Navigation Satellite System (GNSS). The accuracy of 

instantaneous position estimates from GNSS observations reaches several centimeters (Gumilar et al., 

2023; Krzyżek & Kudrys, 2022). Therefore, GNSS helps users to improve the productivity of large-

scale maps compared when using conventional terrestrial methods, such as mapping using a total 

station as it provides positioning estimates in real-time and requires less labor (Kizil & Tisor, 2011). 
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Although GNSS offers efficient yet accurate positioning solutions, it also comes with a major 

drawback. The height estimate from GNSS position solutions is defined at the geodetic height system, 

i.e., using ellipsoidal surface as the vertical reference surface. Ellipsoidal surface is a simplified 

mathematical approximation of the geoid (Hofmann-Wellenhof et al., 2008). Consequently, the 

positioning estimates from GNSS observations do not have any physical meaning, i.e., cannot be used 

for determining the flow water direction. Therefore, to obtain physical height estimates (orthometric 

height) on the Earth surface using GNSS observations, the information related to the geoid height 

must be available accurately. Specifically for future large-scale mapping applications, it is essential 

to have a geoid model with high accuracy. 

Having geodetic height estimates from GNSS observations and precise geoid height model, one 

can easily convert the geodetic height into orthometric height using the following equation: 

  

 𝐻 = ℎ − 𝑁 (1) 

 

where 𝐻 is the orthometric height or the height difference between the geoid surface and the point on 

the Earth’s surface, ℎ is the geodetic height, defining the height on the Earth’s surface referring to the 

ellipsoidal surface, and 𝑁 is the geoid height undulating between the geoid and ellipsoid surfaces. It 

should be noted that geoid height can be positive or negative. It is positive when geoid surface lies 

above the ellipsoidal surface and vice versa. In simple, the relationship between Earth’s topography, 

ellipsoidal and geoid surfaces is shown in Fig. 1. 

 
 

Fig. 1. A simplified diagram showing the relationship among the ellipsoid, geoid, and surface of the Earth. 

 

The geoid height can be modeled based on geometric and gravimetric approaches. The geoid 

height modeled using the geometric approach relies on the combination of GNSS and leveling 

observations, providing heights that refer to ellipsoid and geoid surfaces. In principle, the geoid height 

can be then derived by calculating the difference between geodetic height from GNSS observation 

and orthometric height from leveling observation. While it seems that the computation of geometric 

geoid height is simple, the measurement is much more challenging and time-consuming (Erol & Erol, 

2021).  Therefore, the gravimetric approach is preferable as the technical aspects, e.g., measurement, 

are much more undemanding but a comprehensive understanding of gravimetric geoid height 

modeling is needed. 

To model the geoid, there are many methods available such as the Stokes-Helmert (SH; Abbak 

et al., 2024; Ellmann & Vaníček, 2007; Lestari et al., 2023; Vaníček et al., 2013), Remove-Compute-

Restore (RCR; Schwarz et al., 1990; Wu et al., 2020; Yildiz et al., 2012a), and Kungl Tekniska 

Högskolan (KTH; Sjöberg, 2003, 2020) methods. Each method has its own computational 

methodology, including procedures for handling terrain effects, mathematical models to continue 

gravity data and terrain effects, etc. Consequently, the geoid height estimates might vary depending 

on the selection of the methodology used regardless of the same gravity data used.  
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Consequently, ongoing research is crucial to develop a geoid model that achieves superior 

accuracy tailored to the specific conditions of our region, Indonesia, which includes varying 

topography with archipelagic situations. The three methods employed for comparison SH, RCR, and 

KTH represent the best practices currently available. Continued evaluation and refinement of these 

methods will be necessary to address the unique challenges posed by our geographic conditions and 

ensure the highest quality geoid modeling. Therefore, this paper aims to assess the geoid height 

estimates from different methods, i.e., the SH, RCR, and KTH methods, and investigates whether a 

significant discrepancy exists among the derived geoid models. For this purpose, we selected the 

central part of Java Island, Indonesia, as our test case as the relatively dense terrestrial gravity 

observations are available. In addition, GNSS/leveling observations that can be used to validate the 

resulting geoid height model are also available.  

The remainder of this paper is described as follows: Section 2 describes the methodologies and 

data used to compute the geoid height model, Section 3 presents the results and discusses the findings, 

and finally, Section 4 presents the conclusion of the study and provides the direction for future 

research. 

2. METHODS AND DATA  

2.1. Stokes - Helmert Method 

 

The Stokes-Helmert method is a method for geoid modeling that utilizes Stokes's Integral to 

convert gravity anomaly into geoid height, while Helmert's 2nd condensation serves as the reduction 

scheme. The calculation of geoid height using the Stokes method requires integration over the entire 

Earth with continuous gravity anomalies. The disturbing potential must obey to the Laplace equation 

above the geoid, ensuring that there is no mass above the surface where the gravity anomaly is situated 

(Hoffman-Wellenhof & Moritz, 2006; Jekeli et al., 2013). However, since gravity measurements 

using gravimeters are typically limited to the study area, the computations need to be supplemented 

with a lower-degree gravity field, such as the global geopotential model (GGM; Hoffman-Wellenhof 

& Moritz, 2006). The formula for calculating residual geoid height can be expressed as follows 

(Abbak et al., 2012): 

 𝑁Δ𝑔 =
𝑅

4𝜋𝛾
∬∆𝑔𝑟𝑒𝑑𝑆(𝜓)𝑑𝜎

 

𝜎

 (2) 

where 𝑁 is the geoid height, ∆𝑔𝑟𝑒𝑑 is the reduced Faye gravity anomaly that is defined as Δ𝑔𝑟𝑒𝑑 =
Δ𝑔𝐹𝐴 − Δ𝑔𝐺𝐺𝑀 − Δ𝑔𝐻, with Δ𝑔𝐹𝐴 is the free-air gravity anomaly, Δ𝑔𝐺𝐺𝑀 is the long-wavelength 

component from GGM, and Δ𝑔𝐻 is the topographic gravity effect, 𝛾 is normal gravity, R is the mean 

of Earth’s radius, and 𝑆(𝜓) is the Stokes’ kernel can be written as: 

 

 𝑆(𝜓) =∑
2𝑛 + 1

𝑛 − 1
𝑃𝑛(cos𝜓)

∞

𝑛=2
 

(3) 

 

where 𝜓 is spherical distances between data points and computation points, 𝑃𝑛(cos𝜓) is Legendre 

function, and 𝑛 is degree. 

 

The Helmert's 2nd condensation reduction scheme serves as a method to satisfy the requirements 

of Stokes's formula, which mandates the absence of masses above the geoid, and that the gravity 

anomaly must be referenced to the geoid (Heck, 2003a). This reduction involves several steps, 

initially, it involves calculating the direct topographical effect on gravity to replace the impact of 

surface masses on gravity with the effect of the mass layer on the geoid (Heiskanen & Moritz, 1967; 

Sideris & Forsberg, 1991; Vanicek & Kleusberg, 1987). Then, a downward continuation is applied to 

determine the gravity anomaly at the geoid by estimating the actual gravity anomaly at the geoid from 



127 

 

observation at the Earth’s surface. Stokes' formula is then applied to the gravity anomalies at co-

geoid. Finally, the computation of the indirect topographical effect is performed to complete the final 

geoid model, yields (Martinec et al., 1993): 

 𝑁 = 𝑁𝐺𝐺𝑀 + 𝑁Δ𝑔𝑟𝑒𝑑 + 𝑁𝑖𝑛𝑑  (4) 

where 𝑁𝐺𝐺𝑀 is the long-wavelength geoid contribution from GGM and 𝑁𝑖𝑛𝑑 is the indirect effect on 

the geoid height for Helmert’s 2nd condensation. 

 

2.2. RCR Method 

 

The Remove-Compute-Restore (RCR) method, like the Stokes-Helmert method, uses Stokes’ 

Integral but with a different reduction scheme. In this method, the computation involves the use of a 

quasigeoid for the approximation surface, which is done by using the RTM reduction scheme. The 

RCR method is commonly used in regional gravimetric geoid modeling, which aims to separate the 

long-, medium-, and short-wavelength geoid/gravity components (Schwarz et al., 1987, 1990; Sideris, 

2013). Geoid modeling, when using the RCR technique, focuses on residual gravity anomaly data to 

streamline the calculation process (Hoffman-Wellenhof & Moritz, 2006). During the removal stage, 

the long-wavelength components (as derived from the global model) and short-wavelengths (as 

computed from the topographic model) are removed from the gravity data. Subsequently, in the 

computation stage, the band-pass filtered gravity anomalies are converted into either quasigeoid 

height or height anomaly using Stokes’ formula. Once the computational stage is completed, the long-

wavelengths and short-wavelengths are restored to obtain the complete quasigeoid height (Yildiz et 

al., 2012b). Fig. 2 illustrates the contribution of each component: long-wavelengths (from the global 

model), medium-wavelengths (from gravity data), and short-wavelengths (from the topographic 

model). 

In the RTM scheme, the reduction performed is not an isostatic topography reduction but 

produces anomalies similar to an isostatic topography anomaly. This scheme is often used for terrain 

reduction in quasigeoid modeling (Forsberg, 1984). This scheme involves the use of a reference 

surface (an average elevation surface) determined by introducing the low pass filter to the precise 

topographical model, obtaining a smoother elevation surface. This reduction technique requires the 

removal of the topographic mass above the reference surface and filling the mass below it (refer to 

Fig. 3; Bajracharya & Sideris, 2005; Yang et al., 2022). 

 

 

 
 

Fig. 2. Illustration of the contribution from various wavelength components to the quasigeoid 

height.  𝜁𝐺𝐺𝑀 is the height anomaly of the long wavelength component, 𝜁𝛥𝑔 is the height anomaly of the 

residual component, and 𝜁𝐻 is the height anomaly of the short wavelength component. 
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Fig. 3. An illustration showing the RTM configuration. The red-shaded area shows the region where more 

masses occur above the mean elevation surface, while the green-shaded area shows the region with a lack of 

masses below the mean elevation surface. 

 

The method of utilizing geoid heights to depict the Earth's physical shape has a limitation: it 

necessitates knowledge of the mass density above the reference surface or requires certain 

assumptions to address this issue. To circumvent this limitation, an alternative approach is adopted, 

allowing for the formulation of the height anomaly as follows (Vu et al., 2019): 

 𝜁 = 𝜁𝐺𝐺𝑀 +
𝑅

4𝜋𝛾
∬Δ𝑔𝑟𝑒𝑠𝑆(𝜓)𝑑𝜎 + 𝜁𝑅𝑇𝑀

 

𝜎

 (5) 

where ∆𝑔𝑟𝑒𝑠 is the residual gravity anomaly defined as ∆𝑔𝑟𝑒𝑠 = Δ𝑔𝐹𝐴 − Δ𝑔𝐺𝐺𝑀 − Δ𝑔𝑅𝑇𝑀, with 

Δ𝑔𝑅𝑇𝑀 is the corresponding RTM gravity effect, 𝜁𝐺𝐺𝑀 is the height anomaly from GGM, and 𝜁𝐺𝐺𝑀 is 

the RTM height anomaly. The height anomaly values are subsequently transformed into geoid height 

values using a formula that we call quasigeoid to geoid separation (QGS), expressed as follows 

(Heiskanen & Moritz, 1967): 

 𝑄𝐺𝑆 = 𝜁 − 𝑁 ≈ −
∆𝑔𝐵𝐴
𝛾

𝐻 (6) 

where ∆𝑔𝐵is the Bouguer gravity anomaly, 𝛾 is normal gravity, and 𝐻 is the orthometric height. The 

Bouguer gravity anomaly, using a Bouguer plate approximation, can be mathematically defined as: 

 

 

Δ𝑔𝐵𝐴 = Δ𝑔𝐹𝐴 − 0.1119𝐻. 
 

(7) 

 

2.3. KTH Method 

 

The KTH method, developed by Kungl Tekniska Hogskolan or KTH Royal Institute of 

Technology, utilizes the Modification Stokes by Sjoberg’s technique to calculate the approximation 

of geoid height. By taking advantage of the orthogonality of spherical harmonics over the sphere, this 

method's equation can be represented as, with two sets of modification parameters 𝑠𝑛 and 𝑏𝑛 (Sjoberg, 

1984; Sjöberg, 1991, 2003): 

 𝑁 =
𝑅

4𝜋𝛾
∬ 𝑆𝐿(𝜓)Δ𝑔𝐹𝐴  𝑑𝜎

 

𝜎0

+
𝑅

2𝛾
∑𝑏𝑛∆𝑔𝐺𝐺𝑀

𝑀

𝑛=2

  (8) 
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where 𝑆𝐿(𝜓) is the modified Stokes’ function, 𝐿 is the selected maximum degree of the arbitrary 

parameters 𝑠𝑛 of the modification, and 𝑀 is the upper limit of the GGM used. The modified Stokes’ 

function can be formulated as: 

 

 𝑆𝐿(𝜓) =∑
2𝑛 + 1

𝑛 − 1
𝑃𝑛(cos𝜓)

∞

𝑛=2
− ∑

2𝑛 + 1

2
𝑆𝑛𝑃𝑛(cos𝜓)

𝐿

𝑛=2
 

(9) 

 

Then, modification parameter 𝑠𝑛 can be expressed by: 

 

 ℎ𝑘 =∑ 𝑎𝑘𝑛𝑠𝑛 ,       𝑘 = 2,3, … . , 𝐿
𝐿

𝑛=2
 

(10) 

 

where ℎ𝑘 is the element of the observable vector and 𝑎𝑘𝑛 is the element of design matrix. 

 

Furthermore, the KTH method incorporates several additive corrections: the combined 

topographic correction (𝛿𝑁𝑐𝑜𝑚𝑏
𝑡𝑜𝑝

) represents the combined direct and indirect topographical effects on 

the geoid, the combined atmospheric correction (𝛿𝑁𝑐𝑜𝑚𝑏
𝑎𝑡𝑚 ) accounts for the combined direct and 

indirect atmospheric effects, and the ellipsoidal correction (𝛿𝑁𝑒𝑙𝑙) adjusts for the spherical 

approximation of the geoid in Stokes’ formula to the ellipsoidal reference surface. Thus, the geoid 

height can be expressed as (Sjöberg, 2003): 

 

 

𝑁 = 𝑁 +  𝛿𝑁𝑐𝑜𝑚𝑏
𝑡𝑜𝑝

+  𝛿𝑁𝑐𝑜𝑚𝑏
𝑎𝑡𝑚 + 𝛿𝑁𝑒𝑙𝑙  

 

(11) 

2.4. Validation 

 

The resulting gravimetric geoid models will be further validated against the geometric geoid 

model derived from GNSS/leveling observations (see Eq. 1). This validation process is referred to as 

absolute validation, where the discrepancy between gravimetric and geometric geoids is being 

assessed. This discrepancy reads: 

 Δ𝑁 = 𝑁𝑔𝑟𝑎 − 𝑁𝑔𝑒𝑜 (12) 

 

where 𝑁𝑔𝑟𝑎 is the gravimetric geoid and 𝑁𝑔𝑒𝑜 is the geometric geoid. 

 

To thoroughly evaluate the effectiveness of a geoid model using GNSS/leveling data, a relative 

validation method is further employed. This involves calculating the differences between the 

differential geoid heights of both the gravimetric and geometric models across various baselines 

derived from GNSS/levelling benchmarks. These discrepancies are then expressed in relative terms, 

measured in m/km, reads (Abbak & Ustun, 2015): 

 

 ∆𝑁𝑖𝑗 =
|(𝑁𝑖

𝑔𝑟𝑎
−𝑁𝑗

𝑔𝑟𝑎
) − (𝑁𝑖

𝑔𝑒𝑜
− 𝑁𝑗

𝑔𝑒𝑜
)|

𝑑𝑖𝑗
 

(13) 

 

where ∆𝑁𝑖𝑗 is relative value and 𝑑𝑖𝑗  is spherical distance from 𝑖 to 𝑗. 

 

2.5. Summary of Methodology for Each Method 

 

The summary of the methodology of the Stokes-Helmert, RCR, and KTH methods is shown in 

Fig. 4. The variation between these three methods is mainly due to differences in their reduction 

schemes and how they handle the Stokes integration when transforming gravity values into geoid 

heights. The SH method employs co-geoid as an approximate surface for the geoid.  
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Fig. 4. Summary of the methodologies used in this study. 

 

The reduction process utilizes 2nd Helmert’s Condensation involves redistributing mass back to 

the geoid itself. Topographic mass is reallocated based on the local condensation procedure, which 

involves compressing the topographic column onto the condensation surface (Heck, 2003b). Then, 

the RCR method calculates residual gravity anomalies by incorporating short-wavelengths 

topographical gravity effects from RTM scheme. Consequently, the estimates read as height 

anomalies instead of geoid height. Therefore, further calculations are required to convert the height 

anomaly values into geoid heights, as previously mentioned (Omang & Forsberg, 2000). Finally, the 

KTH method does not use any reduction scheme, the calculation is carried out directly on the 

topographic surface. Instead, an additive correction (see eq. 11) is applied after the geoid 

approximation value is obtained. 

A key difference among the methods compared, particularly noticeable in the KTH method, lies 

in the modification of the Stokes kernel used for geoid calculations (see eq. 8 and eq. 9). For the case 

of SH and RCR methods, a slightly different Stokes’ modification is further introduced. Specifically, 

we applied the Wong-Gore modification to the Stokes function. The modified Stokes function for SH 

and RCR methods is defined as follows (Forsberg & Tscherning, 2008; Wong & Gore, 1969): 

 

 𝑆𝑚𝑜𝑑(𝜓) = 𝑆(𝜓) −∑𝛼(𝑛)
2𝑛 + 1

𝑛 − 1
𝑃𝑛(𝜓)

𝑀

𝑛=2

 
(14) 

 

 

 

𝛼(𝑛) =

{
 

 
1 𝑓𝑜𝑟    2 ≤ 𝑛 ≤ 𝑀1  

𝑀2 − 𝑛

𝑀2 −𝑀1

  𝑓𝑜𝑟    𝑀1 ≤ 𝑛 ≤ 𝑀2, 𝑛 = 2,… ,𝑀

0 𝑓𝑜𝑟    𝑀1 ≥ 𝑛 ≤ 𝑀2  

 
(15) 
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where 𝑀1 and 𝑀2 represent the lower and upper degree of spheroidal modification for the kernel 

integration. To obtain the appropriate spherical caps, 𝑀1, and 𝑀2, a trial-and-error evaluation is 

conducted to achieve the best results. 

 

2.6. DATA 

 

2.6.1. GNSS/Leveling 

 

The GNSS/leveling data utilized in this study were surveyed and processed by the Geospatial 

Information Agency (Badan Informasi Geospasial, BIG) at 186 points, spanning from north to south 

between Semarang and Yogyakarta (refer to Fig. 5c). The GNSS observations were conducted using 

the relative differential method, tied to the nearby CORS (Continuously Operating Reference System) 

within the research area. Additionally, leveling was performed with respect to the tidal benchmark 

(BM) in the research area. The geoid heights derived from the GNSS/leveling measurements serve as 

validation values against the geoid model generated using the gravimetric method as described in 

Section 2.4. 

 

2.6.2 Terrestrial Gravity Data 

 

The terrestrial gravity data was gathered by BIG in 2019. A total of 264 data points were 

collected, covering the central area of Java Island that were mostly clustered in Semarang and 

Yogyakarta. These measurements were conducted at 5-kilometer intervals using the Scintrex CG-5 

relative gravimeters (refer to Fig. 5a). 

  

2.6.3. Digital Elevation Model 

 

The Digital Elevation Model (DEM) serves as the short-wavelength component and is essential 

for computing terrain correction, indirect effect, and generating the residual terrain model (RTM). We 

utilized SRTM 1” (SRTM, 2015) data for land areas and SRTM 15”+ (Tozer et al., 2019) for oceanic 

regions (refer to Fig. 5d). These data were further combined and resampled to 1”, obtaining a 

consistent grid resolution. To derive parameters from the RTM, we employed the TGF software (Yang 

et al., 2020). Otherwise, an in-house program package is used to calculate the remaining parameters. 

 

2.6.4. Global Geopotential Model 

 

To address the scarcity of terrestrial gravity data, we incorporated a global geopotential model 

(GGM) to fill the gaps and enhance the quality of the gravimetric geoid. Additionally, GGM includes 

a long-wavelength component as it requires integration across the entire Earth due to the use of 

Stokes’ integral. Specifically, we utilized the Earth Gravitational Model 2008 (EGM2008) with 

degrees and orders of 2190, which is known to have a resolution of approximately 5 arc minutes or 

roughly 9.13 kilometers (Pavlis et al., 2012).  

 

2.6.5. Fill-in Gravity Data  

 

The process of calculating a local gravimetric geoid model involves integrating terrestrial gravity 

data within a specific area. To ensure accuracy and precision, it's essential to address any gaps in 

gravity information by incorporating data from alternative sources (Matsuo & Kuroishi, 2020). In this 

study, we added the gravity data by combining EGM2008 with a degree and order of 2190 and RTM 

obtained from SRTM 1” for land areas, and SRTM 15”+ for oceanic regions (refer to Fig. 5b). 
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Fig. 5. Free-air gravity anomalies from terrestrial gravity data (a) and fill-in gravity data (b). Panel (c) and 

(d) show the distribution of geoidal height from GNSS/leveling and topography from the combination between 

SRTM1” and SRTM15”+ models, respectively. 

3. RESULT AND DISCUSSION 

The investigation involved the computation of three local gravimeters model using different 

methodologies: Stokes-Helmert (SH), Remove-Compute-Restore (RCR), and Kungl Tekniska 

Högskolan (KTH). The primary differences among these methods lie in their reduction schemes and 

how they handle the computational aspects of the Stokes formula. The SH method uses a reduction 

scheme based on the co-geoid surface, while RCR operates on the quasigeoid. The KTH method 

directly utilizes the geoid surface. In terms of the Stokes formula, the SH and RCR methods adjust 

the gravity anomaly, whereas KTH modifies the Stokes kernel. Computationally, both SH and RCR 

employ the multiband spherical Fast Fourier Transform (FFT), while KTH uses ordinary numerical 

integration. Geoid modeling performed using the SH and RCR methods was based on in-house 

programs package, while the KTH method utilized the LSMSSOFT software (Abbak & Ustun, 2015).  

Despite these differences, all three approaches share common procedures during computation, 

including utilizing spherical caps of 1.28° and the application of bias correction on the resulting geoid 

models. Bias correction was obtained by calculating the average difference between the gravimetric 

geoid model and validation data. The variations observed among the three geoid models (refer to Fig. 

6) are relatively minor. However, regions with elevated topography exhibit more distinct color 

contrasts in the KTH model compared to the SH and RCR models. According to the statistical data 

(refer to Table 1), the average geoid height within the study area (110°-111° E and 6.5°-8° S) for the 

SH, RCR, and KTH methods are 26.620 m, 26.593 m, and 26.605 m, respectively, representing a 

difference of approximately 3 cm. When considering the highest and lowest geoid height values 

within the study area, both SH and RCR methods demonstrate similar ranges, spanning from 24.347 

m to 28.836 m for SH and 24.323 m to 28.766 m for RCR. In contrast, the KTH method exhibits a 

notable disparity in the minimum geoid height value within the study area, differing by 40 cm 

compared to the other methods. The range of geoid model values utilizing the KTH method extends 

from 23.938 m to 28.816 m. 
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Fig. 6. Geoid models obtained when implementing SH (a), RCR (b), and KTH (c) methodologies. 

 
                                                                                                                 Table 1.  

Statistics of the geoid models when using different methodologies. 

Geoid Min [m] Max[m] Mean[m] 

SH 24.347 28.836 26.620 

RCR 24.323 28.766 26.593 

KTH 23.938 28.816 26.605 

 

Fig. 7 illustrates the discrepancies among each model, presenting the differences between the SH 

method and the RCR method (see Fig. 7a), between the SH method and the KTH method (Fig. 7b), 

and between the RCR model and the KTH model (Fig. 7c). The disparity between the SH and RCR 

models is relatively insignificant compared to the disparity between the KTH model and both the SH 

and RCR models. Particularly noticeable differences are observed between the KTH model and the 

other two models, notably in the northern and central mountainous regions, as well as in the southern 

areas. These variations are further elucidated by the statistical data presented in Table 2. The 

differences between the SH and RCR models range from -9.8 cm to 28.4 cm, while the disparity 

between the SH and KTH models spans from -4.5 cm to 70.8 cm. Similarly, the difference between 

the RCR and KTH models ranges from -47.2 cm to -62.9 cm. As previously outlined, the variation 

between the SH and RCR methods is relatively minor, with mean, root mean square (RMS), and 

standard deviation (STD) values of 2.7 cm, 4.4 cm, and 3.5 cm, respectively. In contrast, the disparity 

between the SH and KTH models yields mean, RMS, and STD values of 1.5 cm, 12.7 cm, and 12.7 

cm, respectively. Meanwhile, the difference between the RCR and KTH models results in mean, 

RMS, and STD values of -1.2 cm, 11.7 cm, and 11.6 cm, respectively. 

 

 
 

Fig. 7. Geoid differences between SH and RCR methods (a); SH and KTH methods (b); RCR and KTH 

methods (c). 
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                                                                                                                                                 Table 2  

Statistics of the differences between the geoid models across different methodologies. 

Geoid Min [m] Max [m] 
Mean 

[m] 

RMS 

[m] 
STD [m] 

SH – RCR -0.098 0.284 0.027 0.044 0.035 

SH – KTH -0.451 0.708 0.015 0.127 0.127 

RCR – KTH -0.472 0.629 -0.012 0.117 0.116 

 

Following the reduction of the geoid model by its bias value relative to the gravimetric geoid 

model produced by GNSS/leveling, validation procedures are undertaken. Notably, the shape of the 

geoid surface in the validation area exhibits minimal discrepancies (refer to Fig. 8). We also 

incorporated EGM2008 into the validation process to assess the extent to which the global model 

(EGM2008) deviates from our gravimetric model. Based on the values from the figure, it appears that 

the difference between the EGM2008 geoid model and our gravimetric model, when compared to the 

validation geoid, is primarily due to a significant shift of about 15 cm. 

The three models demonstrate standard deviation and RMS differences of only approximately 1-

2 cm (refer to Table 3), with the RCR method yielding the most favorable outcomes compared to the 

others. Specifically, the standard deviation and RMS values for the SH, RCR, KTH, and EGM2008 

models are 10.7 cm, 8.4 cm, 9.2 cm, and 10.2 cm, respectively. This table shows that each model 

exhibits disparities with the validation data (GNSS/leveling), ranging from -50.2 cm to 25.3 cm for 

the SH method, -46.9 cm to 19 cm for the RCR method, -41.5 cm to 22.6 cm for the KTH method, 

and -66.5 cm to 3.7 cm for the EGM2008. In addition, the relative assessment demonstrates good 

overall precision of about 0.006 m/km or corresponds to an error of 6 mm for every one kilometer, 

making it suitable for most practical applications.  

 

 
 

Fig. 8. The comparison between geometric and gravimetric geoid models. Light blue lines 

display the differences between geometric and gravimetric geoid models.  

Note the difference in scale. 
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Table 3  

Statistics from the validation of the SH, RCR, and KTH method geoid models. 

 

Geoid 

Absolute assessment Relative assessment 

Min [m] Max [m] 
Mean 

[m] 

RMS 

[m] 
STD [m] 

Min 

[m/km] 

Max 

[m/km] 

Mean 

[m/km] 

SH -0.521 0.253 0.000 0.107 0.107 0.000 1.390 0.006 

RCR -0.469 0.190 0.000 0.084 0.084 0.000 1.389 0.005 

KTH -0.415 0.226 0.000 0.092 0.092 0.000 1.409 0.007 

EGM2008 -0.665 0.037 -0.156 0.186 0.102 0.000 1.399 0.006 

 

Looking closer at Fig. 8 and Table 3, the discrepancy between geometric and gravimetric geoid 

models seems to be prominent at several points of validation. This affects the corresponding 

maximum and minimum discrepancy in absolute and relative assessments. Particularly for the 

absolute assessment, the absolute minimum discrepancy is larger than twice the standard deviation 

value (corresponds to 95% confidence intervals). At the same time, the maximum values for the 

relative assessment are significantly different compared to the mean values. This highlights possible 

outliers that are likely due to the errors in GNSS/leveling measurements. Lestari et al. (2023) stated 

that the leveling measurements underwent relatively strict measurement requirements, including the 

difference of height difference between forward and backward leveling was less than 8√𝐾 mm, with 

𝐾 being the distance of the leveling section in kilometer units. Hence, another possible error is likely 

caused by the GNSS measurements. The GNSS observations were set up using tripods, making it 

prone to error in measuring the height of the antenna.  

In this study, modeling the geoid using RCR methodology seems to be better than those other 

methodologies, including the SH and KTH methods. Hence, we further conducted a statistical analysis 

to investigate whether the accuracy performance across methodologies is statistically significant or 

not, using a t-test analysis with 95% confidence intervals based on the results of the absolute 

assessment. The t-values across the geoid models computed in this study fell below the critical t-

value, suggesting that the differences in geoid models generated by the SH, RCR, and KTH 

methodologies are not statistically significant despite the apparent superiority of the RCR method. 

This finding is consistent with previous research conducted by, e.g., Wang et al. (2021), which also 

observed minimal differences in the results of geoid models derived from various methodologies 

made by different agencies using a similar dataset. This further supports the robustness of different 

geoid modeling techniques. 

4. CONCLUSIONS 

Geoid modeling was conducted for the central part of Java Island using terrestrial gravity data 

and three different methodologies: Stokes-Helmert (SH), Remove-Compute-Restore (RCR), and 

KTH. The primary differences among these methods are in their approaches to the Stokes formula 

and reduction scheme. Among the methods, the RCR method emerged as the most effective in terms 

of geoid model accuracy, with an RMS of 8.4 cm, outperforming the KTH method at 9.2 cm and the 

SH method at 10.7 cm. At the same time. the discrepancies in the geoid surface between the SH and 

RCR methods were less pronounced compared to those observed with the KTH method. This is 

evident from the range of difference values generated, where the disparity between the surfaces of the 

SH and RCR method models spans around 30 cm, while the difference between the KTH method and 

both the SH and RCR methods exceeds 1 meter. Further comparison with the global model of 

EGM2008 indicates that the resulting gravimetric geoid models are better with the different in RMS 

reaches up to 10 cm. This discrepancy is primarily due to a systematic difference between the 

EGM2008 geoid model and our gravimetric geoid models. 

Given the observed differences in geoid models, we conducted a t-test analysis with 95% 

confidence intervals to determine if these differences were statistically significant. The results 

revealed that the t-values were below the critical threshold, implying that the variations between the 
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SH, RCR, and KTH methodologies are not statistically significant. Despite the RCR method 

demonstrating apparent superior performance, these differences do not reach statistical significance. 

We stress that this study is made with a relatively limited gravity dataset, where only terrestrial 

gravity dataset is used. Future studies should be incorporating more gravity datasets, e.g., recent 

airborne gravity dataset (Bramanto et al., 2021), covering the gaps in in-situ gravity observations. 

This effort could potentially improve the performance of geoid models as suggested by Bjelotomić 

Oršulić et al., (2020). In addition, we acknowledge that only one profile line of GNSS/leveling 

observations is available, making it challenging to make a robust external absolute assessment of the 

resulting gravimetric geoid models. Denser GNSS/leveling observations with stricter measurement 

requirements are essential for future work. 
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