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ABSTRACT 

A new automated approach for flash extent delineation and mapping and risk assessment was applied 

in the context of the Oued Sakia-Al Hamra flood (Laayoune, southern Morocco) of October 2016. 

Normalized Difference Flood Index (NDFI) mapping was employed to distinguish between flood-

prone and non-flood-prone areas across an extensive region, leveraging the Bragg backscattering 

properties of active radar pulses on flat water surfaces, which exhibit minimal signal reflection. The 

study utilized Sentinel-1 satellite SAR images in Wide Swath (IW) interferometric mode and Ground 

Range Detected (GRD) product type. Pre-processing and processing chain, which combines water 

classification, multi-temporal and contextual filtering, topographic correction of a total number of 2 

images: before and after the flood event. Consequently, a high classification accuracy of 99.05% using 

Sentinel-1 C-band images for the flooded area of Oued Sakia-El Hamra was obtained after validation 

using both optical images of Landsat-8 and Google-Earth. The results demonstrate the effective 

utilization of SAR data for identifying flooded areas, assessing their extent, evaluating associated 

hazards, and subsequently recommending appropriate mitigation measures as needed. 
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1. INTRODUCTION 

 

Flash floods occur in numerous regions worldwide, causing substantial annual losses (White, 

2023). They represent the most common natural disaster and are recognized as a significant threat, 

particularly in urban areas across sub-Saharan Africa (Tiepolo, 2014). Since, accurately mapping the 

flooded water extent areas is very important to be used to validate the hydraulic models and quantify 

the flood risk consequences in the context of land use planning and coverage.  

Floods frequently inundate expansive regions that are challenging to survey and monitor on the 

ground. Spatial remote sensing data serves as an ideal source for efficiently and cost-effectively 

monitoring large-scale flood events from a bird's-eye view. Optical satellite imagery, including 

platforms like QuickBird, RapidEye, Planet, Landsat, SPOT, ASTER, Sentinel-2, and MODIS, has 

proven effective in previous studies for generating water masks of flooded areas. These optical sensors 

represent the most favored source of information due to their spectral component and simplicity of 

interpretation (Smith, 1995). Usually, such optical satellite data are suffered from cloud covers, 

especially of those which are accompany the heavy rains and cause flooding (Henshaw et al., 2013; 

Schumann et al., 2018). Meanwhile, synthetic aperture radar (SAR) systems emerge as robust tools 

for flood monitoring in near-real-time (NRT), owing to their ability to operate effectively in diverse 
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weather conditions (Mertes, 2002; Alsdorf et al., 2007) and around the clock (Franceschetti & Lanari, 

1999; Schumann & Moller, 2015). SAR technology has demonstrated proficiency in detecting water 

surfaces, estimating flood depths, and identifying submerged areas under canopy cover. Significant 

efforts have been devoted to development of algorithms for accurately delineating flood extents from 

radar imagery. Common methodologies for SAR-based flood mapping encompass simple visual 

interpretation, supervised classification, image texture analysis, threshold segmentation, histogram-

based thresholding, multi-temporal change detection techniques, active contour models, and 

interferometric SAR approaches (Arnesen et al., 2012 ; Borghys et al., 2006 ; Brivio et al., 2002 ; 

Dellepiane & Angiati, 2012 ; Dellepiane et al., 2000 ; Di Baldassarre et al., 2011 ; Dong et al., 2015 ; 

Horritt et al., 1999 ; 2001 ; Hostache el al., 2012 ; Martinez & Le Toan, 2007 ; Martinis et al. 2011 ; 

Mason et al., 2007 ; Nico et al., 2000 ; Pierdicca el al., 2012 ; Pulvirenti el al., 2011 ; 2013 ; Schumann 

et al., 2009 ; Smith, 1997). 

Change Detection (CD) method involves technology that compares backscatter intensity before 

and during flooding to identify pixel change (Mertes, 2002; Alsdorf et al., 2007; Lu et al., 2014). The 

main water body thus identified from the reference image is used on the flood image to isolate water 

pixels within these bodies, facilitating the derivation of statistical curves that describe them.  

By combining the strengths of change detection (CD) and thresholding, Long et al. (2014) 

computed the absolute difference between flood and reference images and applied two thresholds to 

distinguish flood areas and shallow water within short vegetation. To enhance objectivity and reduce 

user influence, threshold values were derived by analyzing the histogram of the difference image 

through a mathematical formula. In a similar vein, Cian et al, (2018) have devised two flood indices 

based on the methodology introduced by Long et al. (2014). The Normalized Difference Flood Index 

(NDFI) and the Normalized Difference Flood in Short Vegetation Index (NDFVI) function primarily 

as change detection techniques (Cian et al., 2018). They offer advantages such as reduced reliance on 

manual intervention and swift flood mapping capabilities (Xue et al., 2022). Specifically, NDFI 

categorizes flooded regions based on the disparity between the mean and minimum backscatter 

coefficient values across a time series (Álvarez-Mozos et al., 2005). However, NDFVI is tailored to 

highlight shallow water within areas of short vegetation, assuming sufficient revisit times for each 

pixel under dry conditions. This differentiation is crucial given the influence of factors like wind, 

vegetation, and environmental variability arising from satellite system parameters. The overarching 

goal of this study is to document and assess temporal and spatial changes in surface conditions of 

streams before and after flooding in the desert environment of the Moroccan Sahara. Like Cian et al. 

(2018), the approach prioritizes robustness and simplicity, requiring minimal user input and 

demonstrating effective applicability across diverse environments using data from various sensors. 

Additionally, it excels in delineating shallow water within short vegetation and identifying flooded 

open areas. 

 

2. ENVIRONMENTAL SETTING OF THE STUDY SITE  

 

The study area lies in the interior of the Moroccan Sahara (Fig. 1A), in particular the Oued Sakia 

El Hamra, which flows through one of the largest cities in the Moroccan Sahara (Laayoune Town). 

The area stretches from the foot of the Anti-Atlas massif to the town of Lagouira in the south and the 

Atlantic coast in the west (Fig. 1B). It is physically remarkably homogeneous, with a large desert 

zone characterized by the presence of the hammada, essentially made up of immense desert plateaus. 

The relief is very flat. Its monotony is interrupted only by a few sabkhas (depressions), limited dune 

belts and the remnants of a fairly small hydrographic network. The geological bedrock consists of 

Upper Cretaceous limestones and sandstones, dipping very gently to the west and overlain by 

powerful Oligocene and Miocene unconformable beds (Ratschiller, 1970). The top of the series is 

composed of lithological formations of Tertiary to Quaternary age, consisting of dunes, sands, 

evaporated silts and carbonate sandstones.  

The area is crossed by the Sakia Hamra wadi, which is the source of numerous dry tributaries, 

highly parched valleys. In normal periods, the flow of the wadi is considered negligible, due to the 
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obstruction of its lower valley by a corridor of sand dunes moving from south to north, associated 

with landslides, the presence of the "Al Massira Al Khadra" hill dam built in 1995 at the town of 

Laayoune, and the absence of floods that have reached the ocean for over fifty years. Further west, 

this watercourse is now marked on the edge of the town of Laayoune by linear tree vegetation 

supported by the water table in the shallow subsoil.  

The study area experiences moderate temperatures influenced by its proximity to the Atlantic 

Ocean. Annual rainfall is minimal, averaging 59 mm at the Laayoune station, and occurs irregularly. 

Coastal temperatures range from 17 to 25°C throughout the year. Persistent winds prevail across the 

region, with monthly maximum speeds ranging from 15.4 to 19.2 m/s, and an annual average speed 

of approximately 17.6 m/s or 63.4 km/h (HCP, 2020). Due to its consistency and strength, wind plays 

a crucial role in generating silting phenomena, shaping dune landscapes, and influencing sand 

movement dynamics. The dunes near Laayoune are renowned for being among the fastest-moving in 

the world, averaging a migration rate of 32 meters per year for dunes that are 9 m high tall. The dune 

fields take the form of a river of sand running NNE-SSW over a length of 150 km. 

Geomorphologically, the barchan dune is the dominant dune form in the region (Amimi et al., 2017). 

Air circulation patterns are significantly shaped by the coastline's configuration, while the dune 

formations are intricately connected to loose sediments originating from the Sahara (Fig. 1C).  

In October 2016, this region was hit by violent storms that caused impressive flooding and river 

flooding. The rainfall occurred over a ten-hour period (between October 28 and 29). The volume of 

water stored at the Al Massira Al Khadra dam, which is known to have a total storage capacity of 110 

million m3. The flood’s peak was reached over 3,000 m3/s, well above the spillway's storage capacity 

threshold (410 m3/s). The occurrence of this extraordinary flood resulted in the wadi overflowing the 

crest of the dam, causing damage to the downstream slope. The height of the two breaches then 

increased as the overflow gradually reached the level of the river. The flood of October 28-30, 2016 

swept away the entire infrastructure in the lower valley and led to the failure of the dam by overflow, 

followed by the obliteration of the dunes in the lower valley and delta (Mazel et al., 2019). 

The infrastructure of the city of Laayoune concerns a wide range of sectors, from transport to 

energy, water, education, health, urbanization, agriculture, fisheries and food (HCP, 2020). They have 

undergone further development with projects to set up a technopole in the dried-up mouth of the Sakia 

El Hamra wadi (Mazel et al., 2019). This phenomenon, combined with the higher intensity of floods, 

has led to an increase in losses and damages. 

 

 
 

Fig. 1. A - Position of studied area in the south of Morocco, B - Simplified geological map of the study area 

from Geological map of Morocco at 1/1000000, and C - Situation of the study area in Google Earth image. 
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3. MATERIALS AND METHODS  

 

Sentinel-1 mission represents a pivotal advancement, harnessing Earth Observation (EO) 

megadata with its provision of free, global SAR measurements through numerous repetitive 

observations. In this study, Sentinel-1 Level-1 Ground Range Detected (GRD) products were utilized. 

These products consist of focused, multi-look SAR data that have been geocoded onto the Earth's 

surface using a terrestrial ellipsoid model such as WGS84. The Sentinel-1 images employed in this 

study belong to the wide interferometric SAR category and operate within the C-band frequency 

range. They were accessed from the Sentinels Scientific Data Hub (https://scihub.esa.int/). the 

acquired images underwent processing using the Sentinel Application Platform (SNAP) software, 

which is an open-source framework developed by the European Space Agency (ESA) designed for 

the comprehensive exploitation and analysis of Earth Observation (EO) data (http://step.esa.int).  

The methodology involves creating two sets of image stacks (Fig. 2) one comprising reference 

images and another incorporating flood images under investigation. Both stacks undergo radiometric 

calibration and terrain correction. Temporal statistics are computed thereafter to calculate the 

Normalized Difference Flood Index (NDFI) for detecting temporary open water bodies. The 

Normalized Difference Flood Index in Vegetated Areas (NDFVI) was computed to detect shallow 

water within short vegetation. Subsequently, a threshold is applied to the index values to isolate 

flooded areas, followed by additional filtering to eliminate clusters of erroneous pixels and enhance 

the precision of the final flood mapping results. 

 

 
Fig. 2. Overview of method adopted in this study (after Cian et al., 2018). 

 

The NDFI and NDFVI calculation formulas are as follows: 

 

NDFI =
mean (σ0 reference)−min (σ0 reference+σ0 flood)

mean (σ0 reference)+(σ0 reference+σ0 flood)
    (1) 

 

     NDFVI =
mean (σ0 reference)−max  (σ0 reference,σ0 flood)

mean (σ0 reference)+max (σ0 reference,σ0 flood)
    (2) 

 

among these terms, "mean" ("reference") signifies the average backscatter coefficient of each 

pixel in the reference image, while "min" ("reference + flood") denotes the minimum backscatter 

coefficient of each pixel across all images.  

We mention that in normal cases, Manjusree et al., (2012) show that backscatter of flood water in 

HV and VH polarizations are same, and both HV and VH polarizations are adequate for flood water 

mapping. From near range to far range, −8 to −12 dB, −15 to −24 dB and −6 to −15 dB can be used 

as optimal ranges for flood water classification in HH, HV and VV polarizations. This study can be 

the blueprint to define optimal threshold ranges of NDFI and NDFVI to produce flood maps within a 

short time from the onset of disasters and deliver these maps to the concerned agencies. 
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4. SURFACE ROUGHNESS ANALYSIS 

 

The C-band, operating at a central frequency of 5.405 GHz and a wavelength of 5.7 cm, exhibits 

high sensitivity to surface water content as observed by radar. This characteristic means that this band 

can be utilized across various applications, such as soil moisture measurement and flood detection. In 

the filtered and geocoded reference image (Fig. 3A), the smoother surfaces appear very dark (Bragg 

scattering), attesting to the fact that the depth of penetration of radar waves into this bare dry soil can 

be quite deep. Radar waves can thus map bedrock and gravel surfaces beneath wind-blown sand 

several centimeters, or even meters, thick. This confirms that the highest soil layers detected can be 

considered as a homogeneous dielectric medium. Rough surfaces, which appear very bright on a radar 

image, correspond to SSW-NNE corridor of moving sand dunes. These have different geometric and 

dielectric properties, with backscattering on rough surfaces. With the same textural properties on the 

ground, image B (Fig. 3B) taken after the rainy flood period shows strong backscattering of the radar 

signal. This confirms that the dielectric properties of soil depend on its water content, and that the 

backscatter coefficient measured by radar instruments increases with increasing in soil moisture. 
 

   
 

Fig. 3. Filtered and geocoded reference (A) and after flood event (B) of the study area. 

 

Radar backscatter refers to the amount of radar signal redirected back to the sensor by the target 

(ESA, 2022). The backscatter coefficient, denoted as σ0 (Sigma0), is typically measured in decibels 

(dB) (Rosenqvist et al., 2018). In SAR imagery interpretation, a general principle states that rougher 

surfaces exhibit higher backscatter intensity in both cross-polarized and co-polarized orientations, 

resulting in brighter images (Liew 2001). Conversely, smooth surfaces tend to produce specular 

reflections, where radar signals are directed away from the sensor, leading to reduced radar return. 

Rough surfaces, on the other hand, scatter radar signals in various directions, resulting in greater radar 

return (IPR, 2022). 

In semi-arid and arid landscapes, land surfaces are generally having low soil moisture content 

and making the radar backscattered return is mainly from the soil roughness, vegetation cover and 

rocks. Surface roughness is a dynamic geomorphic property. Radar signals vary considerably. In the 

study area, the radar signal returned varies significantly due to changes in terrain morphology, 

topography, and the predominance of sandy surface cover (Fig. 4).  

On the reference corrected image centered on the course of Oued Sakia El Hamra (Fig. 4A), and 

for pixels with values σ0 less than 0.007dB (Points 1 to 6), water bodies are delineated with high 

precision, focusing on accurately detecting their outer boundaries. This is the case for pixels located 

in the middle of the dam (Points 1 and 2). These values are also detected in the target image (Fig. 

4B). For σ0 values between 0.009 and 0.012, backscattering from the sand dunes on the bed of the 

main watercourse is expected (Points 9 to 12). For σ0 values between 0.012 and 0.0135, the water 

mass limits are included (Points 13 to 17). Values of σ0 between 0.062 to 0.067 (Points 20 to 23) 

attest to a smooth surface and the image are dark. By increasing this threshold (σ0 > 0.138) (Points 7, 
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8, 18 and 19), dry pixels of bare soil in watercourses begin to be included. Once the watercourse is 

fed, these pixels give values of σ0 around 0.0034 (Point 7, Fig. 4B). 

Sabkhas are mainly found in inland desert basins and nearby coasts with semi-arid and arid 

climates. These depressions mark the desert landscape of southern Morocco. Most of them cover less 

than 5 square kilometers. They are seasonally covered by water that gradually seeps into the 

underlying aquifers or evaporates, causing salt and sediment deposits to form at the bottom and edges, 

and shaping their surface properties. Deposited sediments are exposed to shrinkage and drying, and 

the clay layers contained control changes in sediment volume, as clay-rich layers cause deep sediment 

shrinkage and drying during long-term droughts.  

Changes in their surface area are controlled by changes in groundwater supply and 

evapotranspiration. These regions show low backscatter on the radar signal from the dry period and, 

on the contrary, very high backscatters of the radar signal on the image taken during the wet period 

(Point 25, Fig. 4A & 4B). This suggests that the sensitivity of the radar backscatter coefficient to 

salinity is influenced by moisture content. The strong dependence of the backscatter coefficient on 

salinity for low humidity values is an important result for applications involving the detection of low 

water resurgence, and confirms the work of Lasne et al, (2009). 

 

 

  
 

 
 

 

Fig. 4. Position of points with σ0 values in the filtered and geocoded reference image (A) and after flood event 

(B) of the study area. 
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5. INDEX ANALYSIS 

 

Fig. 5 displays the outcomes of the index analysis on the Google Earth image (A) the 

corresponding NDFI image and (B) the resulting NDFVI image. The blue color of the NDFI image 

is the water bodies that flood the city of Laayoune (σ0 is around -0.93), in addition to the rivers that 

find their main beds under the moving sand dunes (σ0) (Fig. 5A). The same map reports water bodies 

on bare soil. Pixels take on σ0 values between -0.33 and 0.55. These pixels can be removed from the 

final maps, which is generally appropriate except in proximity to flooded areas where they may need 

to be included in the final flood map. The dilation filter helps mitigate this potential error, which 

remains within acceptable limits. On sand dunes, water bodies are barely distinguishable and σ0 is 

around -0.20. This supports the idea that dunes fossilize impermeable layers and recharge water to 

deep aquifers. 

                                                                                                                                            A 

 
                                                                                                                                B 

 
 

Fig. 5. Successively resulting analysis of NDFI and NDFVI on Google-Earth image of the study area (frames 

show positions of Fig. 6, 7 and 8). 

 

The findings exhibit strong agreement with flooded areas identified by Hakdaoui et al., (2019) 

through their analysis of multi-spectral data in the same region. These researchers utilized four 

spectral indices (Normalized Difference Water Index "NDWI", Normalized Difference Moisture 

Index "NDMI", Normalized Difference Drought Index "NMDI", and Albedo "Al"), followed by 
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change detection using diachronic images data from Sentinel-2 MSI and Landsat-8 OLI acquisitions 

before and after the event. Their study underscores the value of integrating diverse sensor data for 

dynamic flood mapping purposes. 

Fig. 5B illustrates the outcome of the NDFVI index analysis. Pixels aggregate prominently 

around the city, along the primary watercourse to the east, and at the river mouth, constituting more 

than 95% of all pixels classified as shallow water in short vegetation. In other areas, these pixels are 

scarcely discernible on the image. 
 

 

6.  RESULTS  

 

Fig. 6 zooms in on a small area of the watercourse west of the town of Laayoune, where shallow 

water and short vegetation were detected by the NDFI and NDFVI indices. This is a time series of 

images from Google Earth referenced from the winter period from December 2010 to April 2023. The 

presence of bodies of stagnant water can be observed in numerous closed, endorheic depressions, 

generally limited by reliefs shaped by sand dunes. The latter occupy the route of the watercourse 

which is usually dry until the flood period. Depressions come from the dislocation of an organized 

hydrographic network, by capture, by exhaustion of flow or by drying out of the climate. They 

therefore depend on the climate and its variations over time. This zone gives an idea of the rate of 

accumulation of sand in depressions and lowlands. The rainy events that occurred in December 2016 

were unusual and returned the main watercourse to its original path. This perfectly illustrates the 

interaction between aeolian and fluvial processes through the accumulation of sand resulting from an 

aeolian and fluvial process during dry conditions alternating with humid climatic episodes and the 

return of the fluvial system. Wind activities have led to the formation of a variety of dunes and sand 

sheets which promote the concentration of groundwater in humid periods. This is due to favorable 

circumstances often occurring in a desert environment. 

 

 
 

Fig. 6. Successively before (a) and after flood (b), NDFI (c) and NDFVI (d) along Sakia Al Hamra 

river and near Laayoune city. 
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The climate intervenes primarily in the specific profile of these bodies of water, which are all 

particular hydrological units. It regulates the abundance of rain, the primary source of water supply, 

and the evaporation, which counterbalances it. It also intervenes on the alternation regime between 

wet and dry periods. In addition to the direct contribution of rain, there are tributary contributions, 

diffuse runoff on the slopes and flooding in the rivers, when there is any, exsurgence and resurgence 

of groundwater. 

Interpretation of spatial images at different scales provided the necessary indicators of the 

relationship between sand accumulations and fluvial processes. Sand accumulations would have been 

responsible for the concentration of groundwater in the substrate. Thus, the correlation between the 

likelihood of groundwater presence in depressions and substantial accumulations of sand emerges as 

a crucial consideration in the exploration of this progressively scarce resource. 

Further west, near the mouth of Oued Sakia El Hamra, numerous drainage lines adjacent to the 

Foum El Oued aquifer were identified using NDFI and NDFI images. These dry waterways were 

covered in wind-blown sand. They generally reappear in sheet flood conditions with abundant surface 

water. Several of these large channels have small, braided streams in their layers, as revealed by 

enlargements of the Sentinel-1 data (Fig. 7). Braiding typically develops from small amounts of 

surface water, indicating multiple episodes of water flow. During the flood, the interior depositional 

basins would have accumulated significant volumes of fresh water. A large part of this water has been 

infiltrated in the deeper rocks under the sand. Field observations reveal that moisture starts to appear 

a few centimeters deep within the sand cover of shallow channels. Thus, areas that encompass large 

accumulations of sand may rely on vast groundwater resources. 

 

 
 

Fig. 7. Successively before (a) and after flood (b), NDFI (c) and NDFVI (d) at the mouth of Oued Sakia El 

Hamra in contact with the Atlantic Ocean. 
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In the collective imagination, the desert is synonymous with aridity. Researchers estimate the 

probability of urban flooding that could cause damage and threaten lives is less than 10% and the risk 

of flooding is considered very low or non-existent. To this end, many constructions are installed in 

areas prone to flooding. Due to its relatively flat topography, gentle slopes, and clay-rich layers, the 

torrential rains resulted in significant economic losses and material damage. 

 

 
 

Fig. 8. Successively before (a) and after flood (b), NDFI (c) and NDFVI (d) showing flood damage near the 

city of Laayoune. 

 

7. CONCLUSION 

 

In this study, we applied a mapping methodology based on statistical analysis of time series for 

flood mapping in the Saharan environment. We used Sentinel-1 data and processed them with 

methods based on open-source software easily achievable also by the community of non-specialized 

experts in remote sensing of the flooded area in 2016, the city of Laayoune, southern Morocco (Fig. 

8). The C band of Sentinel-1, operating at a wavelength of 5.7 cm, has a high sensitivity to surface 

water content as observed by radar. This band was used to measure soil moisture and flood detection. 

In the filtered and geocoded reference images, the smoothest surfaces appear very dark (Bragg 

scattering), attesting to the fact that the penetration depth of radar waves in this bare and dry soil can 

be quite deep. The rough surfaces appear very bright, corresponding to a corridor of moving sand 

dunes. These have different geometric and dielectric properties, with backscattering on rough 

surfaces. With the same textural properties on the soil, images taken after the rainy flood period show 

a strong backscattering of the radar signal. This confirms first that the dielectric properties of the soil 

depend on its water content, that the backscattering coefficient measured by radar instruments 

increases with increasing soil moisture and that the optimal threshold ranges for SAR data used in 

this analysis, can be the outline of a classification of flooded areas in desert context. 

Two indices are proposed for flooded area mapping: the Normalized Difference Flood Index 

(NDFI) allowed the mapping of open water and the Normalized Difference Flood Index in Vegetation 

(NDFVI) for mapping shallow water in short vegetation and generating flood maps. These methods 

have made it possible to highlight the course of the watercourse, which is usually dry until flood 

periods as well as the stagnant water bodies in many closed depressions. The position of the 
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depressions show that they come from the dislocation of an organized hydrographic network, by 

capture, by exhaustion of the flow or by drying of the climate. This also gives an idea of the rate of 

accumulation of sand in the depressions and lowlands. The accumulations of sand would have been 

responsible for the concentration of groundwater in the substrate. This perfectly illustrates the 

interaction between wind and fluvial processes through the accumulation of sand resulting from a 

wind and fluvial process during dry conditions alternating with humid climatic episodes and the return 

of the fluvial system. This analysis can be generalized for the Saharan regions where wind activities 

and the return of the fluvial system interact during flood periods for the purpose of modeling, which 

is highly requested by the intervention organizations concerned, managers and scientists. In these 

regions, the correlation between the probability of groundwater in depressions and substantial sand 

accumulations appears to be a crucial consideration in the exploration of progressively scarce water 

resources. 
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