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ABSTRACT 

The persistent forest and land fires in Indonesia have piqued the interest of numerous social groups. 

Due to the huge number of losses caused by fires, fire prediction is an important part of fire prevention. 

This study focused on Kalimantan, which is one of the major contributors to fires in Indonesia. This 

article focuses on modeling the relationship between total precipitation, the number of dry days, and 

hotspots in Kalimantan, Indonesia for each ENSO phase using a nested 3-copula approach. Using the 

selected copula structure, the number of hotspots was estimated using nested 3-copula regression with 

two predictors. Copula regression offers more robustness to outliers and non-normality in the data 

compared to traditional regression techniques. The results reveal that the regression model based on 

ENSO phases has an RMSE of 1204 hotspots per month and can explain up to 70% of the variance in 

hotspots. These results outperform models without ENSO phases, highlighting the importance of 

ENSO phases in simulating hotspots in Kalimantan. From the regression plane, the ENSO phase has a 

small impact on the hotspots at low levels. When it comes to high or intense hotspots, the ENSO phase 

is very important. El Nino is the most dangerous phase for extreme hotspots, while La Nina is the least 

dangerous. The findings of this study can help researchers better understand the influence and 

dependence of local and global climate conditions on hotspots in Kalimantan, which can be evolved 

into an early warning model for forest fires in Indonesia in the future. 
 

Key-words: Copula regression, Dry spells, Hierarchical copula, High-dimension, Multivariate copula, 

Uncertainty, Wildfire. 

1. INTRODUCTION 

Indonesia is known as a group of islands separated by vast oceans. Its location around the equator 

flanked by two continents (Asia and Australia) and two oceans (Pacific and Indian) makes the 

Indonesian region vulnerable to climate variability. The climate in Indonesia is strongly influenced 

by natural phenomena in the surrounding sea, such as the El Nino Southern Oscillation (ENSO) 

(Firmansyah et al., 2022; Kurniadi et al., 2021). Most of the natural disasters that have occurred in 

Indonesia are closely related to the ENSO phase, such as droughts (Lestari et al., 2018), floods 

(Rodysill et al., 2019), and forest fires (Zahra et al., 2023). 

ENSO is a sea surface condition in the Pacific Ocean region that experiences an increase or 

decrease in sea surface temperature resulting in a shift in the seasons in Indonesia. There are three 

phases of ENSO: neutral, El Nino and La Nina phases. El Nino refers to warming the ocean surface, 

or above-average sea surface temperatures (SSTs), in the central and eastern tropical Pacific Ocean. 

It represents the warm phase of the ENSO cycle. On the contrary, La Nina refers to the cooling of the 

central and eastern tropical Pacific Ocean surface and is the cold phase of the ENSO cycle 

(Wahiduzzaman et al., 2022). In Indonesia, El Nino phase correlates to less rainfall and drought, while 

La Nina phase correlates to rainfall increase and floods (Nugroho, 2022). Several unforgettable forest 

fire events in Indonesia occurred during a very strong El Nino, such as in 1997 and 2015 (Fanin & 
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Van Der Werf, 2017). These forest fires impact various sectors from rampant deforestation (Adrianto 

et al., 2020) and alarming declines in air quality (Rahman et al., 2024) to the tragic loss of flora and 

fauna (Harrison et al., 2016; Wasis et al., 2018) and the health problems faced by affected residents 

(Hein et al., 2022; Uda et al., 2019). This phenomenon underscores the far-reaching consequences of 

forest fires, impacting every facet of ecosystems and human life. 

Forest fires are a recurring environmental issue that has significant local, regional, and global 

implications. Forest and peatland fires during the 2015 El Nino drought were among the worst in 

Southeast Asia, contributing to carbon emissions across the region, with the haze causing an air 

pollution crisis affecting millions of people (Lee et al., 2017). Peatland fires in Indonesia also result 

in long-term health impacts causing premature mortality due to chronic respiratory, cardiovascular 

and lung cancer (Uda et al., 2019) . As a result, forest and peatland fires have become an issue that 

has attracted the attention of the government, communities and researchers. 

Several researchers have explored the intricate relationship between global and local climate 

factors and their correlation with hotspots as indicators of forest and land fires. Yananto & Dewi 

(2016) highlighted how El Niño events significantly increased hotspots in Sumatra and Kalimantan, 

particularly between July and October 2015, when reduced rainfall coincided with a surge in fires. 

Aflahah et al. (2018) further examined forest fire indicators in Kalimantan, using multiple linear 

regression analysis to show the strong interconnection among visibility data, the number of hotspots, 

and temperature, underscoring their substantial influence on fire incidents. Nurdiati et al., (2022b) 

investigated the effects of ENSO and IOD conditions on the distribution of dry days and total 

precipitation in southern Sumatra, concluding that these factors significantly impacted the dry season 

but not the rainy season. Najib et al. (2022b) proposed a fire risk model for Kalimantan using copula 

regression, demonstrating that dry spells served as a better climatic predictor for fire risks than total 

precipitation. Collectively, these studies illuminate the complex dynamics of climate and fire activity, 

offering vital insights for effective forest fire management. 

Copula regression is a statistical modeling technique that combines two important concepts: 

copulas and regression analysis. Copulas are mathematical functions used to describe the dependence 

structure between random variables, while regression analysis is a method for modeling the 

relationship between a dependent variable and one or more independent variables. Copula regression 

brings these two concepts together to provide a flexible and powerful approach for modeling complex 

dependencies and relationships in data (Czado et al., 2022; Kolev & Paiva, 2009). 

One of the advantages of copula regression is its flexibility in modeling dependencies. Copula 

regression is often more robust to outliers and non-normality in the data compared to traditional 

regression techniques. Unlike traditional regression models that assume normality and linearity, 

copula regression can capture a wide range of dependency patterns, such as tail dependencies, 

asymmetry, and non-monotonic relationships. Copula regression has applications in various fields 

including environmental science (Najib et al., 2023), finance (Pan et al., 2023), medicine (Gayawan 

et al., 2023), and engineering (Ma et al., 2022). 

Previous studies have shown that apart from decreasing rainfall due to the El Nino phase, a high 

number of days without rain (or dry days) is an important factor triggering forest and peatland fires, 

especially in Kalimantan, Indonesia. In Najib et al., (2022a), the two climatic factors are used 

separately to model hotspots using bivariate copulas. Both of these factors have their respective 

advantages in predicting hotspots in Kalimantan, although in general the number of dry days 

outperforms as a predictor of hotspots. Therefore, it is a challenge to model hotspots using both 

climatic factors using the copula trivariate. Multivariate copulas can be constructed based on bivariate 

copulas. Two commonly used approaches are nested copula (Serinaldi & Grimaldi, 2007) and vine 

copula (Heredia-Zavoni & Montes-Iturrizaga, 2019). 

Nested and vine copulas are advanced techniques used to model complex multivariate 

dependencies, each of which has advantages and disadvantages. Here, we are interested in studying 

nested copula which has advantages, including a simple structure and less computational complexity 

(Saad et al., 2015), especially when dealing with a relatively small number of variables. Meanwhile, 

vine copulas can be advantageous when dealing with high-dimensional data, as they provide a 
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structured approach to managing the computational complexity of estimating multivariate 

dependencies. 

Based on that description, this article focuses on modeling the relationship between total 

precipitation, number of dry days, and hotspots in Kalimantan, Indonesia for each ENSO phase using 

a nested 3-copula approach. There are several bivariate copula functions used in this article, both 1-

parameter and 2-parameter copula. Using the selected copula structure, the number of hotspots was 

estimated using copula regression with two predictors using the Riemann sum discretization approach 

(Jha & Danjuma, 2020). 

The article is organized as follows. Datasets are detailed in Section 2. Section 3 presents the 

methods, including copula functions, parameter estimation, and nested 3-copula regression. The 

results and discussion are reported in Section 4. Finally, Section 5 concludes this article. 

2. STUDY AREA AND DATASETS 

This research focuses on Kalimantan, the Indonesian section of the island of Borneo, the world's 

third-largest island. The island of Borneo is shared by three countries: Indonesia, Malaysia, and 

Brunei. Kalimantan is the Indonesian portion of Borneo, accounting for roughly three-quarters of the 

island's total area. West, Central, South, East, and North Kalimantan are the five provinces of 

Kalimantan (Fig. 1a). Each province has its unique culture, topography, and governance system. 

Forest fires have been a reoccurring environmental and ecological hazard in Kalimantan, as well 

as other parts of Southeast Asia. These fires are frequently caused by a combination of factors and 

have far-reaching consequences for the region, including human activities, deforestation, 

infrastructure development, land management policies and climate changes. This study focuses on the 

climate factors that play a significant role in causing forest fires in Kalimantan, as they influence the 

environmental conditions that can lead to fire ignition and propagation, such as total precipitation and 

the number of dry days. 

 
Fig. 1. (a) Map of Kalimantan, (b) clusters of hotspots in Kalimantan, and (c) selected areas for research. 
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This study makes use of numerous datasets. The information includes hotspots, total 

precipitation, the number of dry days (also known as dry spells), and the ENSO index (Nino 3.4). 

Hotspot data covers the Asia-Pacific region with a spatial resolution of 0.25∘ × 0.25∘. The data was 

obtained from the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) in the 

2001-2020 period. Precipitation and number of dry days were taken and derived from the CMORPH-

CRT product. The acronym CMORPH stands for "CPC (Climate Prediction Center) MORPHing 

technique", while CRT stands for "Calibrated Rainfall Technique" (Xie et al., 2019). By incorporating 

satellite data and calibrating the estimates with ground-based measurements (Bruster-Flores et al., 

2019), CMORPH-CRT provides a more comprehensive and accurate picture of precipitation patterns 

on a global scale. CMORPH-CRT is adjusted through matching the probability density functions 

(PDF) of daily CMORPH-RAW against that for the CPC unified daily gauge analysis at each month 

over land (Xie et al., 2017). The spatial resolution for the precipitation data used is 0.25∘ × 0.25∘, 

while the temporal resolution used is the monthly resolution of precipitation and number of dry days. 

According to Septiawan et al. (2019), forest fire patterns are generally divided into two 

characteristics, namely Sumatra and Kalimantan fires. In terms of temporal characteristics, Septiawan 

et al. (2019) also stated that fires in Sumatra have two characteristics (6-month and 12-month periods), 

while fires in Kalimantan generally have an annual period. Compared to Sumatra which is more 

affected by the Indian Ocean Dipole phenomenon, forest fires in Kalimantan are more affected by the 

El Nino-Southern Oscillation phenomenon (Nurdiati et al., 2022a). Thus, the general characteristics 

of fires in Kalimantan can be said to be the same. However, not all areas but only a few points in 

Kalimantan are affected by forest fires. Therefore, a classification needs to be carried out so that only 

areas that have a significant influence on forest fires in Kalimantan are considered. 

The data used is the result of extraction from previous research by Najib et al. (2021) which 

classifies forest fires in Kalimantan into several clusters (Fig 1b). In general, cluster 1 is an area with 

very low fire incidence, has relatively high land topography (mountains) and has quite high rainfall. 

Thus, the area in cluster 1 can be ignored because it can interfere with the general characteristics of 

forest fires in Kalimantan. Only cluster 1 was removed from the study area due to its classification as 

a low fire-prone region, characterized by a maximum hotspot occurrence of only about 3.43 hotspots 

per grid point, i.e., in 2002. The selection criteria focused on hotspot frequency and geographic 

coverage, allowing for a more targeted analysis of higher-risk areas, while higher-level clusters 

exhibit more hotspots and reflect conditions conducive to increased fire risks. The datasets are then 

aggregated into fire-prone areas in Kalimantan, i.e., grid points with significant concentrations of 

hotspots (Fig. 1c) to generate general characteristics of the data. Moreover, data were taken in months 

with high hotspots: July to November (Fig. 2). 

 
Fig. 2. Average and maximum monthly hotspots in 2001-2020 in fire-prone areas in Kalimantan. 
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According to Najib et al., (2021), the total precipitation that gives the strongest relationship is the 

two-month average, meaning that if the hotspots are in September, then the intended total precipitation 

is the average of the precipitation in August and September. If hotspots are detected in October, the 

total precipitation used for analysis would typically be calculated as a two-month average, encompass-

ing the precipitation from September and October, and so on. Meanwhile, the number of dry days that 

is most correlated with hotspots is the three-monthly number of dry days, which is averaged over all 

fire-prone areas in Kalimantan. These data are used as predictors for hotspots in this study which will 

later be referred to as total precipitation and number of dry days. 

3. METHODS 

3.1. Copula Function 

A copula function is a mathematical concept used in probability theory and statistics to describe 

the dependency structure between multiple random variables. Copula theory's basic concept is to 

separate the modeling of marginal distributions from the modeling of joint distributions, allowing for 

more flexible and complete representations of dependence patterns. Therefore, copulas provide a 

flexible way to model various types of dependencies between random variables, including linear, 

nonlinear, positive, negative, and tail dependencies. This flexibility allows them to capture complex 

relationships that may not be easily represented by traditional multivariate distributions. Traditional 

multivariate statistical techniques often assume normal distributions for variables, but real-world data 

frequently deviates from this assumption. Mathematically, a copula is defined as follows. 

 

Definition 1. An 𝑛-dimensional copula (or 𝑛-copula) is a function 𝐶 from 𝐈𝑛 → 𝐈 with the following 

properties: 

1. For every 𝐮 ∈ 𝐈𝑛, 𝐶(𝐮) = 0 if at least one coordinate of 𝐮 is 0, and if all coordinates of u 

are 1 except 𝑢𝑘, then 𝐶(𝐮) = 𝑢𝑘 

2. For every 𝐚, 𝐛 ∈ 𝐈𝑛 such that 𝐚 ≤ 𝐛, 𝑉𝐶([𝐚, 𝐛]) ≥ 0, where 𝑉𝐶 is 𝐶-measure of a set. 

Sklar’s theorem is the core of the copula theory (Nelsen, 2006). Based on Sklar's theorem, copula 

is referred to as a function that links the multivariate joint cumulative distribution function to the 

corresponding univariate marginal cumulative distribution functions (Li et al., 2019). 

 

Theorem 1. Let 𝐹 be a joint distribution function for a set of 𝑛 continuous random variables 

𝑋1, 𝑋2, … , 𝑋𝑛 each with marginal distribution function 𝐹1, 𝐹2, … , 𝐹𝑛. According to Sklar's theorem 

(1959), there exists a copula function 𝐶 such that for any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ: 

 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) (1) 

 

where 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) for 𝑖 = 1,2, … , 𝑛 and is called 𝑛-copula. 

Proof: See (Nelsen, 2006) □ 

In other words, the joint distribution function 𝐹 can be expressed in term of the marginal 

distribution functions 𝐹1, 𝐹2, … , 𝐹𝑛 and a copula function 𝐶, which characterizes the dependence 

structure between the variables. If marginal distributions are continuous, the copula function is 

unique. However, this assumption can easily extend to a mixture of continuous and discrete variables 

(Schölzel & Friederichs, 2008). A copula function 𝐶 is uniquely determined on 𝑅𝑎𝑛 𝐹1 ×  𝑅𝑎𝑛 𝐹2 ×
⋯ ×  𝑅𝑎𝑛 𝐹𝑛, if not all marginal distributions are continuous. 

3.1.1. Nested Copula 

In the context of multivariate dependence modeling, an exchangeable copula is a copula function 

that reflects the exchangeability property. This is a simple and elegant approach to constructing high 

dimensional copulas (Zhang & Singh, 2019b). It is assumed that the variable dependence structure 

remains constant regardless of the order in which the variables are analyzed. Exchangeable copulas 
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are frequently symmetric, which means they do not distinguish between variables based on their 

involvement in the dependent structure. This symmetry is an unavoidable result of the exchangeability 

property, so exchangeable copulas are also often called symmetric copulas. Therefore, they may not 

capture more complex or heterogeneous dependence structures that exist in real-world data, although 

exchangeable copulas offer simplification in modeling high-dimensional dependencies. 

Following (Joe, 1997), (Whelan, 2004), and (Serinaldi & Grimaldi, 2007), 𝑛-copula can be 

written in a form called "fully nested" or "asymmetric" which is obtained from a generalization of 2-

copula, since it takes into account the non-exchangeability of the variables. The nested copula 

approach outperforms the exchangeable copula approach significantly (Aas & Berg, 2009). 

Asymmetries, allowing for more realistic dependencies, are obtained by plugging in Archimedean 

copulas into each other (Segers & Uyttendaele, 2014). There are 𝑛 − 1 bivariate copula functions for 

𝑛-dimensional random variables modeled with fully nested copula, resulting in dependence structure 

with partial exchangeability. The fully nested copula structure is constructed with the following 

procedures (based on the degree of dependence between the pair variables): 

1. As the first two variables (1 and 2), select the variables with the highest degree of dependence 

(rank-based). 

2. Using variables 1 and 2, estimate the copula. 

3. Evaluate the degree of dependence (rank-based) between empirical copula from step 2 with 

the remaining variables. 

4. Select variable 3, which has the maximum degree of dependence (rank-based) with the 

copula constructed using variables 1 and 2. 

5. Continue the process until the last variable is considered. 

 
Fig. 3. Three-dimensional nested copula structure. 

 

Figure 3 presents an example of a three-dimensional nested copula structure. Bivariate copulas 

are the foundation of nested copulas. Since 𝑛 = 3, the nested 3-copula equation is given by 

 

𝐶(𝑢1, 𝑢2, 𝑢3) = 𝐶2(𝐶1(𝑢1, 𝑢2), 𝑢3) (2) 

 

Figure 3 shows that two bivariate copulas are required to describe the dependence for three-

dimensional random variables using nested copulas, as shown below. First, 𝑢1 and 𝑢2 are coupled by 

copula 𝐶1, then the resulting variable is linked with 𝑢3 by copula 𝐶2. In general, the first two variables 

are coupled by a 2-copula, then the resulting copula is coupled with another variable by a second 

copula, and so on. The nested copula model makes it possible to construct joint distributions with 

different degrees of positive dependence within different bivariate margins (McNeil, 2008). 

In the context of this research, 𝑢1 represents the transformed cumulative distribution function 

(CDF) values of total precipitation, while 𝑢2 corresponds to the transformed CDF values of the 

number of dry days. Additionally, 𝑢3 signifies the transformed CDF values of hotspots. The function 

𝐶1 is the copula function that describes the dependence between the climate factors (total precipitation 

and number of dry days), while 𝐶2 is the copula function that links these climate factors to the 

hotspots. This nested copula structure allows for a comprehensive analysis of the relationships and 

dependencies among the various variables, facilitating a deeper understanding of how climate factors 

influence hotspot occurrences. 

𝑢1 𝑢2 𝑢3 

𝐶1 

𝐶2 
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3.2. Parameter Estimation and Hypothesis Tests 

There are various types of copula functions, each with its own characteristics, properties and 

suitability for different dependencies. Different copulas differ in describing the dependence structures 

(Li et al., 2020). We use many types of copula functions, both 1-parameter and 2-parameter, including 

Gaussian, t-student, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, and BB8 copulas. 

Meanwhile, there are also many types of marginal univariate distribution that are used, including 

normal, lognormal, inverse gaussian, extreme value, generalized extreme value, logistic, loglogistic, 

exponential, gamma, and Weibull distributions for climate factors and negative binomial distribution 

for hotspots. 

We use a 2-step method to estimate the copula parameters called the inference of function for 

margins (IFM), which estimates the parameters of the marginal distribution first before estimating the 

copula parameters (Joe, 1997). In summary, the process for constructing a nested 3-copula is as 

follows. 

1. Estimate 𝐹1, 𝐹2, and 𝐹3. 

2. Estimate 𝐶1 using 𝑢1 and 𝑢2. 

3. Estimate 𝐶2 using 𝑢3 and 𝐶2(𝑢2, 𝑢1). 

Several statistics were used such as the Anderson Darling hypothesis test to select the most fit 

marginal distribution, while the copula function was selected using the Akaike Information Criterion 

(AIC) and tested based on the Cramer-von Mises hypothesis test. For more details, the parameter 

estimation process can be seen in Najib et al., (2022b). 

The Anderson-Darling test departs with the null hypothesis that the data comes from a population 

with the selected distribution, where the test statistic is given by 

 

𝐴2 = − (∑
2𝑡 − 1

𝑁

𝑁

𝑡=1

[ln 𝐹(𝑥𝑡) + ln(1 − 𝐹(𝑥𝑛+1−𝑡))]) − 𝑁 (3) 

 

over the ordered sample values 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑁 (Anderson & Darling, 1954). Meanwhile, the 

Cramer-von Mises hypothesis test was performed to test the selected theoretical copula, with the null 

hypothesis that the data comes from the population with the selected theoretical copula, where the test 

statistic is given by 

�̂� = ∑[𝐶(𝐹1(𝑥1
𝑡), 𝐹2(𝑥2

𝑡)) − �̃�(𝑥1
𝑡 , 𝑥2

𝑡)]
2

𝑁

𝑡=1

 (4) 

where �̃� is the empirical frequency (copula) estimated using the Gringorten formula (1963): 

 

�̃�(𝑥1
𝑡 , 𝑥2

𝑡) =
#(𝑋1 ≤ 𝑥1

𝑡 , 𝑋2 ≤ 𝑥2
𝑡) − 0.44

𝑁 + 0.12
 (5) 

 

where 𝑁 is the sample size of data. The 𝑝-value is estimated, then with a significance level of 5%, if 

the 𝑝-value is greater than 5%, then the test fails to reject the null hypothesis. 

3.3. Nested 3-Copula Regression Model 

From Equations 1 and 2, it can be written that 

 

𝐹(𝑥1, 𝑥2, 𝑥3) = 𝐶2(𝐶1(𝑢1, 𝑢2), 𝑢3) (6) 

Since 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) for 𝑖 = 1,2,3, a joint probability density function 𝑓 can be obtained by deriving 

both sides with respect to 𝑥1, 𝑥2, 𝑥3, so that 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3) ⋅ 𝑐1(𝑢1, 𝑢2) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥1) ⋅ 𝑓3(𝑥3) (7) 
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where 𝑐1 and 𝑐2 are density functions of 𝐶1 and 𝐶2, respectively. A copula density 𝑐 of a copula 

function 𝐶 is given by its derivative with respect to each of its marginals: 

𝑐(𝑢𝑗 , 𝑢𝑘) =
𝜕2

𝜕𝑢𝑗𝜕𝑢𝑘

𝐶(𝑢𝑗 , 𝑢𝑘) (8) 

where 𝑢𝑗 = 𝐹𝑗(𝑥𝑗) and 𝑢𝑘 = 𝐹𝑘(𝑥𝑘) for 𝑗 ≠ 𝑘. If 𝐹𝑗 and 𝐹𝑘 are continuous CDFs, then copula will 

uniquely determine the joint probability distribution of 𝑋𝑗 and 𝑋𝑘. If 𝐹𝑗 and 𝐹𝑘 are a mixture of discrete 

and continuous CDFs, then copula will only uniquely determine the joint probability distribution of 

𝑋𝑗 and 𝑋𝑘 over range 𝐹𝑗 × range 𝐹𝑘 (Pleis, 2018).  

Let 𝑋3 be the response variable while 𝑋1 and 𝑋2 are the explanatory variables, then the conditional 

probability density function of 𝑥3 given 𝑥1 and 𝑥3 is defined by 

𝑓(𝑥3|𝑥1, 𝑥2) =
𝑓(𝑥1, 𝑥2, 𝑥3)

𝑓(𝑥1, 𝑥2)
= 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3) ⋅ 𝑓3(𝑥3) (9) 

due to 𝑓(𝑥1, 𝑥2) = 𝑐1(𝑢1, 𝑢2) ⋅ 𝑓1(𝑥1) ⋅ 𝑓2(𝑥1). 

 

If we wish to predict the value of 𝑥3, then we might take the expected value of the conditional 

density (Eq. 6), which is so-called conditional expectation. The conditional expectation value gives 

the minimum mean square error in the prediction for 𝑥3, so it is also called the minimum-mean-

square-error predictor. Using Equation 6, the conditional expectation value of 𝑥3 given 𝑥1 and 𝑥2 is 

defined by 

𝐸(𝑥3|𝑥1, 𝑥2) = ∫ 𝑥3 ⋅ 𝑓(𝑥3|𝑥1, 𝑥2)
∞

−∞

𝑑𝑥3 = ∫ 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3) ⋅ 𝑓3(𝑥3) ⋅ 𝑥3

∞

−∞

𝑑𝑥3 (10) 

 

Since nested copulas are used to construct the conditional density, we call this formula a nested copula 

regression. Copula regression is often more robust to outliers and non-normality in the data compared 

to traditional regression techniques. It can handle data with heavy tails and non-standard distributions 

more effectively. 

For computational convenience, we use the Riemann sum approach to estimate the value of the 

integral in Equation 7: 

𝐸(𝑥3|𝑥1, 𝑥2) ≈ ∑ 𝑐2(𝐶1(𝑢1, 𝑢2), 𝑢3
(𝑖)

⋅ 𝑓3(𝑥3
(𝑖)

) ⋅ 𝑥3
(𝑖)

⋅ Δ𝑥3
(𝑖)

𝑝

𝑖=1

 (11) 

where 𝑝 represents the number of partitions used (Jha & Danjuma, 2020). 

3.4. Performance Metrics 

We use several metrics to measure the performance of the resulting regression models, including 

root mean squared error (RMSE) and explained variance score (EVS). The RMSE is defined as: 

 

RMSE(𝑦, �̂�) = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1   (12) 

 

where 𝑦 is the actual data and �̂� is the predicted data. Meanwhile, the explained variance score is 

estimated by: 

EVS(𝑦, �̂�) = 1 −
𝑣𝑎𝑟(𝑦𝑖 − �̂�𝑖)

𝑣𝑎𝑟(𝑦𝑖)
 (13) 

Scores close to 1.0 are highly desired, indicating better squares of standard deviations of errors 

(Oyedele et al., 2023). 



 Teduh Wulandari MAS’OED, Sri NURDIATI, Ardhasena SOPAHELUWAKAN, Mohamad Khoirun … 272 

 

4. RESULTS AND DISCUSSION 

Here, we use scenario 1 without observing the ENSO effect and scenario 2 by observing the 

ENSO effect. This study analyzed the ENSO data monthly, allowing for a detailed examination of its 

influence on precipitation and dry days throughout the year. The ENSO phases were then classified 

into neutral, El Niño (ENSO > 0.5), and La Niña (ENSO < −0.5) categories. Scenario 1 uses all data 

without splitting (100 rows), while scenario 2 split data based on the ENSO phase: neutral (51 rows), 

El Nino (23 rows), and La Nina (26 rows). This section presents the selected marginal distribution, 

nested copula construction, and nested copula regression results. 
                                                                                              Table 1. 

Kendall-tau correlation between variables. 

Datasets 𝑿𝟏 − 𝑿𝟐 𝑿𝟏 − 𝑿𝟑 𝑿𝟐 − 𝑿𝟑 

No Split 0.7119 0.5972 0.6186 

El Nino 0.6614 0.6878 0.6138 

Neutral 0.7396 0.5069 0.5367 

La Nina 0.6857 0.5871 0.5298 

 

Suppose 𝑋1, 𝑋2, and 𝑋3 are negative of total precipitation, number of dry days, and hotspots, 

respectively. We choose to use the negative of total precipitation as 𝑋1 so that the two predictors (𝑋1 

and 𝑋2) have a positive dependence on hotspots. Table 1 shows the Kendall-tau correlation between 

variables. Except in El Nino conditions, the pair of variables 𝑋1 and 𝑋2 produces the strongest 

Kendall-tau correlation. For equality, the copula structure chooses 𝑋1 and 𝑋2 to be coupled as the first 

pair of variables. Aside from that, the presence of correlation is a prerequisite for copula-based 

modeling. Because the correlation value is quite strong, copula modeling can be performed. 

4.1. Marginal Distribution of Variables 

Estimating the marginal distribution of all variables is the first procedure for copula modeling. 

For instance, Table 2 shows the statistics of distribution fitting results for the number of dry days in 

scenario 1. 
Table 2. 

Statistics of Distribution Fitting Results for the Number Of Dry Days in Scenario 1. 

Distribution          
Anderson-Darling 

AIC 
Statistics p-value 

Generalized Extreme Value 0.27261 0.95711 776.38 

Weibull 0.3138 0.92727 775.88 

Normal 0.43073 0.81744 777.94 

Logistic 0.58951 0.65754 784.07 

Extreme Value 0.63162 0.6182 783.24 

Gamma 0.85789 0.4408 781.98 

Log-logistic 1.0708 0.322 789.67 

Lognormal 1.2084 0.26427 786.42 

Inverse Gaussian 1.2687 0.24271 786.42 

Exponential 26.397 6e-06 978.94 

 

A total of ten distributions were tested for the fitting of the marginal distributions of each variable. 

The results in Table 2 indicate that the Generalized Extreme Value (GEV) distribution provided the 

most significant fit for the number of dry days in scenario 1, as evidenced by its high p-value of 

0.95711 and the lowest Akaike Information Criterion (AIC) value of 776.38 among all distributions 

tested. These statistics suggest that the GEV distribution effectively captures the characteristics of the 

data, making it the optimal choice for modeling the number of dry days in this study. In contrast, other 

distributions, such as the Exponential distribution, exhibited poor fit with a low p-value (6e-06), 

indicating a significant deviation from the observed data. This selection process highlights the 
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importance of evaluating multiple distribution models to identify the most appropriate one for the 

given dataset. 

The fitting process was subsequently carried out for each variable in both scenario 1 and scenario 

2. This involved applying the same methodology of estimating marginal distributions and assessing 

the goodness-of-fit for various distributions across all relevant variables. By conducting this 

comprehensive fitting analysis, the study aimed to ensure that the selected distributions accurately 

represent the underlying characteristics of the data for both scenarios, facilitating a more robust copula 

modeling approach for understanding the relationships between the climate factors and hotspot 

occurrences. 

Table 3 presents the marginal distributions that were determined to be the best fit for the data 

across different scenarios, with the p-values from the Anderson-Darling hypothesis test provided in 

brackets. These p-values serve as an indicator of how well each distribution fits the observed data, 

with a focus on testing the null hypothesis (H₀) that the data follows the specified distribution. In this 

case, all marginal distributions exhibited p-values greater than 0.05, which indicates that there is 

insufficient evidence to reject the null hypothesis. This result suggests that the observed data does not 

significantly deviate from the fitted distributions, implying that these distributions are suitable for 

accurately representing the characteristics of the data. 

Consequently, since the p-values indicate a good fit, all identified marginal distributions can be 

confidently used in subsequent analyses and modeling processes. This is a crucial step in the copula 

modeling framework, as ensuring that the marginal distributions are appropriately fitted provides a 

solid foundation for understanding the dependencies and interactions between the variables in the 

study. The ability to utilize these distributions in further processing enhances the robustness of the 

research findings and the reliability of the conclusions drawn regarding the relationships among the 

climate factors and hotspot occurrences. 
Table 3. 

Fitting Results of Marginal Distributions with Anderson-Darling Test. 

Datasets 𝑿𝟏 𝑿𝟐 𝑿𝟑 

No split  Generalized Extreme Value 

𝑘 = −0.475,  
𝜎 = 78.826, 𝜇 = −214.47 

AD p-value = 0.5129  

Generalized Extreme Value 

𝑘 = −0.381,  
𝜎 = 12.013, 𝜇 = 45.105 

AD p-value = 0.9571 

Negative Binomial 

𝑅 = 0.42177,  
𝑃 = 0.00030405 

AD p-value = 0.6772 

Neutral  Generalized Extreme Value 

𝑘 = −0.447,  
𝜎 = 72.164, 𝜇 = −204.56 

AD p-value = 0.9113  

Normal 

𝜇 = 48.189, 
𝜎 = 9.6703 

AD p-value = 0.9985 

Negative Binomial 

𝑅 = 0.44483, 
𝑃 = 0.00046452 

AD p-value = 0.9908 

El Nino  Generalized Extreme Value 

𝑘 = −0.721, 
𝜎 = 74.768, 𝜇 = −176.82 

AD p-value = 0.9956  

Generalized Extreme Value 

𝑘 = −0.532, 
𝜎 = 9.2313, 𝜇 = 55.484 

AD p-value = 0.9951 

Negative Binomial 

𝑅 = 0.64896,  
𝑃 = 0.00022228 

AD p-value = 0.7666 

La Nina  Generalized Extreme Value 

𝑘 = 0.241,  
𝜎 = 40.913, 𝜇 = −288.80 

AD p-value = 0.9668  

Generalized Extreme Value 

𝑘 = 0.0745,  
𝜎 = 7.8011, 𝜇 = 32.976 

AD p-value = 0.9915 

Negative Binomial 

𝑅 = 0.4662, 
𝑃 = 0.0012023 

AD p-value = 0.7158 

 

The results show that generalized extreme value distribution is the dominant distribution for 

variables 𝑋1 and 𝑋2. Generalized extreme value distribution is a probability distribution used to model 

the extreme values of random variables, that includes three types of extreme value distributions as a 

special case: the Gumbel, Fréchet, and Weibull distributions (Boudrissa et al., 2017; Jenkinson, 1955). 

Since 𝑋1 refers to negative values of total precipitation, the smaller the position parameter (𝜇) of the 

generalized extreme value distribution the wetter the climate conditions. Based on that, El Nino causes 

drier precipitation in Kalimantan, while La Nina causes wetter precipitation than the neutral phase. 

Moreover, El Nino causes more dry days while La Nina causes fewer dry days than the neutral phase 

based on the fittest distribution of 𝑋2. 
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For 𝑋3, the negative binomial distribution is chosen because of its data type which contains many 

zero values (Greene, 1994). In the context of data analysis with many zero values, the parameter 𝑃 in 

the negative binomial distribution refers to the probability of a zero value (excess zeros component). 

The results show that El Nino has a smaller probability of zero hotspots than the neutral phase, which 

means that El Nino is more likely to have high hotspots. Conversely, La Nina has a greater probability 

of zero hotspots than the neutral phase, so it is safer from high hotspots. A comparison of the position 

parameters and the probability of a zero-value parameters is presented in Figure 4. 

Using selected distributions, each variable is estimated with the cumulative distribution function 

(CDF) which is known as the probability transformation. Probability transformation refers to the 

process of converting probabilities from one distribution to another using a specific mathematical 

function. Here, we transform the selected distributed original data into uniformly distributed using 

the CDF value. The variables resulting from this transformation are denoted 𝑈1, 𝑈2, and 𝑈3 which are 

used for the copula parameter fitting process. 

 
Fig. 4. Comparison of the position parameters and the probability of a zero-value parameters. 

4.2. Selected Copulas and Its Parameters 

The parameters of each copula function used are estimated using 𝑈1, 𝑈2, and 𝑈3, then the fittest 

copulas are selected based on Akaike’s Information Criterion (AIC). Table 4 shows the fittest copula 

functions and their parameters for each condition, as well as the 𝑝-values of the Cramer-von Mises 

hypothesis test. Based on these 𝑝-values, all copulas have a 𝑝-value > 0.05, meaning that there is not 

enough evidence to reject 𝐻0 (data comes from the selected copula). Thus, all these copulas can be 

used for further processing. Gaussian is the most preferred copula compared to other copula functions. 

The other copula functions selected are the copula functions of Galambos-180∘, Gumbel, and Joe. 

Table 4. 

Fitting Results of Copula Functions With Cramer-Von Mises Test. 

Datasets 𝑪𝟏 𝑪𝟐 CvM (p-value) 

No split  Gaussian, 𝜌 = 0.89 Gaussian, 𝜌 = 0.834   0.059 (𝑝 = 0.570) 

Neutral Gaussian, 𝜌 = 0.9067 Gaussian, 𝜌 = 0.7744 0.040 (𝑝 = 0.640) 

El Nino Gaussian, 𝜌 = 0.8905 Galambos-180∘, 𝜃 = 1.7879 0.028 (𝑝 = 0.689) 

La Nina  Gumbel, 𝜃 = 3.4330 Joe, 𝜃 = 3.1067 0.028 (𝑝 = 0.690) 

 

In the data without splits and in the neutral phase, the inner 𝐶1 and outer 𝐶2 copulas choose 

Gaussian as the fittest copula. A Gaussian copula can be understood as a member of the elliptical 

copula family. Elliptical copulas are a class of copula functions that encompass a broader range of 
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dependence structures beyond just the Gaussian (normal) distribution. By obtaining the Gaussian as 

the fittest copula, this means that there is no significant tail correlation in the constructed model. This 

is natural because during normal phases, climatic factors (conditions) and forest fires usually have no 

upper or lower extremes. However, the parameters of the Gaussian copula control the correlation or 

dependence between variables. Thus, due to the high value of 𝜌, a strong dependency is seen in the 

relationship between climatic factors as well as between climatic factors and hotspots. 

For the El Nino phase, the Gaussian copula was chosen as the inner copula and Galambos-180∘ 

as the outer copula. The term 180∘ indicates that there is a rotation of the Galambos copula by 180∘, 

also known as the survival Galambos copula (Liu et al., 2018). The Galambos copula is a specific 

type of copula that is often used to model extreme value dependencies. It is well-suited for capturing 

positive tail dependence, which means that extreme values of one variable are likely to be 

accompanied by extreme values of another variable. 

For the La Nina phase, the Gumbel copula was chosen as the inner copula and Joe as the outer 

copula. Like the Galambos copula, the Gumbel copula is often used to model joint extreme events 

(Budiarti et al., 2018). Meanwhile, the Joe copula, is a family of copulas that generalizes the Gumbel 

and Clayton copulas. It allows for a smooth transition between these two copulas, providing flexibility 

in capturing different types of dependence structures. 

4.3. Mean Regression 

Using Eq. 8, the mean regression for hotspots is estimated based on the corresponding climate 

factor values. If the regression with one predictor is visualized using the regression line, then in the 

case of a two-predictor regression, the visualization uses the regression plane.  

We plot the regression plane in a two-dimensional plane using a contour plot, while bubble plots 

are used to plot the actual hotspots. A contour plot, also known as a level plot or isoline plot, is a 

graphical representation used to visualize three-dimensional data on a two-dimensional surface. It is 

commonly used to show the variations and patterns in data that have two independent variables 

(represented on the 𝑥 and 𝑦 axes) and a dependent variable (represented through contour lines or color 

gradients). Here, the more yellow the color, the higher the estimated number of hotspots. Meanwhile, 

a bubble plot extends the concept of a scatter plot by introducing a third dimension using varying 

sizes of markers, usually represented as circles (or bubbles). This allows us to represent three variables 

in a two-dimensional space. We also provide color accents to emphasize the high and low number of 

hotspots that occur. Here, the larger the circle and the yellower the color, the higher the number of 

actual hotspots. Figure 5 shows the regression plane for hotspots on the data without splitting based 

on the ENSO phases. 

 

Fig. 5. Regression plane for hotspots on the data without splitting based on the ENSO phases. 
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Based on Figure 5, if the total precipitation value is smaller and the number of dry days is higher, 

then the number of hotspots is increasing. From the regression plane, hotspots start to appear more 

than 1000 hotspots in a month when the average 2-month total precipitation is less than 175 

mm/month, and the number of dry days is more than 51 days in three months. The regression plane 

shows color gradations like the actual hotspots values indicated by the colors in the circles, indicating 

that the regression gives good results for estimating the number of hotspots. This is reinforced by its 

performance metrics which show an RMSE of 1340 hotspots and an EVS of 63.17%. This shows that 

the estimated hotspots can explain the variance of the actual hotspots by 63.17%. These results have 

not considered the ENSO phase in the modeling. Regression planes for hotspots based on ENSO 

phases are visualized in Figure 6. 

 

 

Fig. 6. Regression planes for hotspots based on ENSO phases: (a) El Nino, (b) neutral and (c) La Nina. 

 

Figure 6 presents the regression results for hotspots in the El Nino, neutral and La Nina phases. 

It is interesting to note that the borders for hotspots above or below 1,000 hotspots/month emerge 

almost on the same line, i.e., when total precipitation is 150-200 mm/month and the number of dry 

days is approximately 50 days/3 months, based on the regression plane. This suggests that the ENSO 

phase has no impact on low hotspot situations with fewer than 1,000 hotspots/month. The significant 

difference can be noticed in hotspots above 1,000 hotspots/month. The regression plane, which only 

has one contour level at 1,000 hotspots/month, demonstrates that the La Nina phase will not touch the 

value of 2,000 hotspots/month. Meanwhile, in the neutral phase, this allows hotspots of up to more 

than 5,000 hotspots/month, though there was one event where hotspots reached up to 8,000 

hotspots/month. This event occurred in 2019 during a very strong positive IOD phenomena, despite 

ENSO being under neutral conditions (Iskandar et al., 2022). More extreme hotspots appear during 

the El Nino phase. In this phase, there is a possibility that hotspots can reach more than 10,000 

hotspots in a month when total precipitation is less than 80 mm/month, and the number of dry days is 

more than 70 days in 3 months. 

Table 5 shows the performance metrics of regression model based on ENSO phases. The RMSE 

value describes that the El Nino phase has the greatest and the La Nina phase has the lowest. This 

number is proportional to the number of monthly hotspots that occur in each phase. Because the 

number of hotspots is so significant during the El Nino phase, the regression model's RMSE is also 

very high. Likewise, for the La Nina phase, the number of hotspots is relatively small.  

 
                                                                                                                       Table 5. 

Performance metrics of regression model based on ENSO conditions. 

Phase  RMSE EVS 

El Nino  1789 66.74% 

Neutral  1025 54.35% 

La Nina  295 77.43% 
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Based on the EVS value, the regression model in the neutral phase is the lowest: 54.35%. This 

means that the regression model can explain the variance of the original data by 54.35%. This also 

implies that the neutral phase has high variance when compared to other phases. In this neutral phase, 

hotspots can be very high or very low with quite high extreme values as happened in 2019. 

Meanwhile, the La Nina phase produces the highest EVS values, which corresponds to the low 

variance in this phase. In this phase, monthly hotspots tend to be low and there have been no extreme 

hotspot events in this phase. 

Finally, the regression model separated by ENSO phases yields an RMSE of 1204 hotspots and 

an EVS of 70.01%. This is an improvement compared to the previous model which did not 

differentiate based on ENSO phases, which only produced an EVS of 63.17%. This highlights the 

importance of ENSO phases in modeling hotspots in Kalimantan. In comparison to previous research 

by Najib et al. (2022b), the RMSE results are relatively close; that study, which also classified ENSO 

phases, reported an RMSE of 1189 hotspots when using total precipitation as a single predictor, while 

using the number of dry days as a predictor yielded an RMSE of 1110 hotspots. Therefore, the results 

obtained in this study remain highly acceptable when compared to those findings. However, there is 

still potential for further research to enhance the accuracy of this copula regression model, aiming to 

achieve an RMSE that approaches or surpasses that of the single-variable predictor copula regression 

models. One potential avenue for improvement is the implementation of more advanced structures, 

such as vine copulas, which could better capture the dependencies among the variables and enhance 

model performance. 

5. CONCLUSIONS 

This study focuses on modeling hotspots based on total precipitation and the number of dry days 

using nested 3-copula regression. Nested copulas offer a simple way to construct high-dimensional 

multivariate distributions. By estimating conditional probability values, the number of monthly 

hotspots in Kalimantan can be estimated. Even though there are many advantages offered by nested 

copulas, there are several notes that need to be considered in regression using copulas. One of them 

is the dependency between the predictors. In section 4 it was revealed that we used negative data from 

total precipitation rather than the original data. This is because if you use total precipitation data, it 

will result in the relationship between total precipitation and the number of dry days being negative. 

This means that the relationship between the predictor data and the response variable is different. 

Thus, cancellation of the response variable occurs when a joint distribution between the predictor data 

is formed. In other words, if the predictor has a negative relationship, then the relationship between 

the joint distribution of the predictor and the response variable will be low. This results in predictions 

being inaccurate. Therefore, the relationship between predictor data and response data is very 

important in nested copula-based regression models. This conclusion is supported by McNeil (2008) 

which states that the nested copula model allows to construct joint distributions with different levels 

of positive dependence in different bivariate margins. 

Regression results for hotspots using nested copula regression show satisfactory performance 

where overall the model based on ENSO phases can explain the variance of hotspot data up to 70%. 

From the regression plane that is formed, the ENSO phase does not really affect the hotspots at low 

levels. The ENSO phase is very influential when talking about high or extreme hotspots, where El 

Nino is the phase that has the greatest opportunity for extreme hotspots to occur, even up to more than 

10,000 hotspots per month. Meanwhile, La Nina is the safest phase for extreme hotspots. From the 

performance metrics, it can be concluded that the ENSO phase has a big influence on modeling 

hotspots in Kalimantan based on total precipitation and the number of dry days. 

Although the nested copula approach significantly improves the symmetric copula approach, it 

is still insufficient to capture all possible interrelationships among 𝑛-dimensional random variables. 

Based on the multivariate density decomposition (Joe, 1997), other approaches such as Pair-Copula 

Construction (PCC) allow for the free specification of copulas that are hierarchical in nature. There 

are two main types of PCCs, canonical (C)-vines and drawable (D)-vines copula (Zhang & Singh, 
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2019a). This study can be developed further by applying a similar regression concept, with a copula 

model construction process using the vine copula approach. However, it should be noted that the 

construction of the vine copula model is more complicated than the nested copula model in the high-

dimensional case. 
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